A posteriori error estimators for linear reduced-order models using Krylov-based integrators

被引:13
|
作者
Amsallem, D. [1 ]
Hetmaniuk, U. [2 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
projection-based model reduction; Petrov-Galerkin projection; error estimation; Krylov-based integrator; off-line; online decomposition; PROPER ORTHOGONAL DECOMPOSITION; COMPUTATIONAL-FLUID-DYNAMICS; REAL-TIME SOLUTION; BASIS APPROXIMATION; REDUCTION; EQUATIONS; SYSTEMS;
D O I
10.1002/nme.4753
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced-order models for linear time-invariant dynamical systems are considered, and the error between the full-order model and the reduced-order model solutions is characterized. Based on the analytical representation of the error, an a posteriori error indicator is proposed that combines a Krylov-based exponential integrator and an a posteriori residual-based estimate. Numerical experiments illustrate the quality of the error estimator. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1238 / 1261
页数:24
相关论文
共 50 条
  • [1] Exploration of efficient reduced-order modeling and a posteriori error estimation
    Chaudhry, J. H.
    Estep, D.
    Gunzburger, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 111 (02) : 103 - 122
  • [2] SOME A POSTERIORI ERROR BOUNDS FOR REDUCED-ORDER MODELLING OF (NON-)PARAMETRIZED LINEAR SYSTEMS
    Feng, Lihong
    Antoulas, Athanasios C.
    Benner, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (06): : 2127 - 2158
  • [3] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [4] Gradient-based constrained optimization using a database of linear reduced-order models
    Choi, Youngsoo
    Boncoraglio, Gabriele
    Anderson, Spenser
    Amsallem, David
    Farhat, Charbel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423 (423)
  • [5] A novel reduced-order algorithm for rational models based on Arnoldi process and Krylov subspace
    Chen, Jing
    Huang, Biao
    Gan, Min
    Chen, C. L. Philip
    AUTOMATICA, 2021, 129
  • [6] Non-linear Manifold Reduced-Order Models with Convolutional Autoencoders and Reduced Over-Collocation Method
    Romor, Francesco
    Stabile, Giovanni
    Rozza, Gianluigi
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (03)
  • [7] Reduced order modeling of random linear dynamical systems based on a new a posteriori error bound
    Hossain, Md. Nurtaj
    Ghosh, Debraj
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (12-13) : 741 - 758
  • [8] Calibration of projection-based reduced-order models for unsteady compressible flows
    Zucatti, Victor
    Wolf, William
    Bergmann, Michel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 433
  • [9] Error estimation for reduced-order models of dynamical systems
    Homescu, Chris
    Petzold, Linda R.
    Serban, Radu
    SIAM REVIEW, 2007, 49 (02) : 277 - 299
  • [10] ERROR ESTIMATES FOR GALERKIN REDUCED-ORDER MODELS OF THE SEMI-DISCRETE WAVE EQUATION
    Amsallem, D.
    Hetmaniuk, U.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 135 - 163