The Emirates Mars Mission (EMM) Emirates Mars InfraRed Spectrometer (EMIRS) Instrument

被引:31
作者
Edwards, Christopher S. [1 ]
Christensen, Philip R. [2 ]
Mehall, Greg L. [2 ]
Anwar, Saadat [2 ]
Tunaiji, Eman Al [3 ]
Badri, Khalid [3 ]
Bowles, Heather [2 ]
Chase, Stillman [2 ]
Farkas, Zoltan [2 ]
Fisher, Tara [2 ]
Janiczek, John [2 ]
Kubik, Ian [2 ]
Harris-Laurila, Kelly [1 ]
Holmes, Andrew [2 ]
Lazbin, Igor [4 ]
Madril, Edgar [2 ]
McAdam, Mark [1 ]
Miner, Mark [2 ]
O'Donnell, William [2 ]
Ortiz, Carlos [2 ]
Pelham, Daniel [2 ]
Patel, Mehul [2 ]
Powell, Kathryn [1 ]
Shamordola, Ken [2 ]
Tourville, Tom [2 ]
Smith, Michael D. [5 ]
Smith, Nathan [1 ]
Woodward, Rob [2 ]
Weintraub, Aaron [1 ]
Reed, Heather [6 ]
Pilinski, Emily B. [6 ]
机构
[1] No Arizona Univ, Dept Phys & Astron, NAU BOX 6010, Flagstaff, AZ 86011 USA
[2] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[3] Emirates Inst Adv Sci & Technol, Mohammed bin Rashid Space Ctr, Dubai, U Arab Emirates
[4] Arizona Space Technol, Tempe, AZ USA
[5] Goddard Space Flight Ctr, Greenbelt, MD USA
[6] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
关键词
Mars; Atmosphere; EMM; Emirates Mars Infrared Spectrometer; THERMAL INERTIA; ATMOSPHERIC TEMPERATURES; MARTIAN SURFACE;
D O I
10.1007/s11214-021-00848-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Emirates Mars Mission Emirates Mars Infrared Spectrometer (EMIRS) will provide remote measurements of the martian surface and lower atmosphere in order to better characterize the geographic and diurnal variability of key constituents (water ice, water vapor, and dust) along with temperature profiles on sub-seasonal timescales. EMIRS is a FTIR spectrometer covering the range from 6.0-100+ mu m (1666-100 cm(-1)) with a spectral sampling as high as 5 cm(-1) and a 5.4-mrad IFOV and a 32.5x32.5 mrad FOV. The EMIRS optical path includes a flat 45 degrees pointing mirror to enable one degree of freedom and has a +/- 60 degrees clear aperture around the nadir position which is fed to a 17.78-cm diameter Cassegrain telescope. The collected light is then fed to a flat-plate based Michelson moving mirror mounted on a dual linear voice-coil motor assembly. An array of deuterated L-alanine doped triglycine sulfate (DLaTGS) pyroelectric detectors are used to sample the interferogram every 2 or 4 seconds (depending on the spectral sampling selected). A single 0.846 mu m laser diode is used in a metrology interferometer to provide interferometer positional control, sampled at 40 kHz (controlled at 5 kHz) and infrared signal sampled at 625 Hz. The EMIRS beamsplitter is a 60-mm diameter, 1-mm thick 1-arcsecond wedged chemical vapor deposited diamond with an antireflection microstructure to minimize first surface reflection. EMIRS relies on an instrumented internal v-groove blackbody target for a full-aperture radiometric calibration. The radiometric precision of a single spectrum (in 5 cm-1 mode) is <3.0x10-8 Wcm(-2) sr(-1)/cm(-1) between 300 and 1350 cm(-1) over instrument operational temperatures (<similar to 0.5 K NE Delta T@ 250 K). The absolute integrated radiance error is < 2% for scene temperatures ranging from 200-340 K. The overall EMIRS envelope size is 52.9x37.5x34.6 cm and the mass is 14.72 kg including the interface adapter plate. The average operational power consumption is 22.2 W, and the standby power consumption is 18.6 W with a 5.7 W thermostatically limited, always-on operational heater. EMIRS was developed by Arizona State University and Northern Arizona University in collaboration with the Mohammed bin Rashid Space Centre with Arizona Space Technologies developing the electronics. EMIRS was integrated, tested and radiometrically calibrated at Arizona State University, Tempe, AZ.
引用
收藏
页数:50
相关论文
共 37 条
  • [1] High-Accuracy Emissivity Data on the Coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black
    Adibekyan, A.
    Kononogova, E.
    Monte, C.
    Hollandt, J.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (06)
  • [2] Almatroushi H, 2021, SPACE SCI REV, DOI [10.1007/s11214-021-00851-6, DOI 10.1007/S11214-021-00851-6]
  • [3] Amiri S., SPACE SCI REV
  • [4] [Anonymous], 1999, RAD TRANSFER ATMOSPH, DOI DOI 10.1017/CBO9780511613470.004
  • [5] Badri K.M., 2019, PREPARING EMIRS UTIL
  • [6] A global view of Martian surface compositions from MGS-TES
    Bandfield, JL
    Hamilton, VE
    Christensen, PR
    [J]. SCIENCE, 2000, 287 (5458) : 1626 - 1630
  • [7] MODTRAN®6: A major upgrade of the MODTRAN® radiative transfer code
    Berk, Alexander
    Conforti, Patrick
    Kennett, Rosemary
    Perkins, Timothy
    Hawes, Frederick
    van den Bosch, Jeannette
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
  • [8] Chamberlain JohnErnest., 1979, The principles of interferometric spectroscopy
  • [9] The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument
    Christensen, P. R.
    Hamilton, V. E.
    Mehall, G. L.
    Pelham, D.
    O'Donnell, W.
    Anwar, S.
    Bowles, H.
    Chase, S.
    Fahlgren, J.
    Farkas, Z.
    Fisher, T.
    James, O.
    Kubik, I.
    Lazbin, I.
    Miner, M.
    Rassas, M.
    Schulze, L.
    Shamordola, K.
    Tourville, T.
    West, G.
    Woodward, R.
    Lauretta, D.
    [J]. SPACE SCIENCE REVIEWS, 2018, 214 (05)
  • [10] Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover
    Christensen, PR
    Ruff, SW
    Fergason, RL
    Knudson, AT
    Anwar, S
    Arvidson, RE
    Bandfield, JL
    Blaney, DL
    Budney, C
    Calvin, WM
    Glotch, TD
    Golombek, MP
    Gorelick, N
    Graff, TG
    Hamilton, VE
    Hayes, A
    Johnson, JR
    McSween, HY
    Mehall, GL
    Mehall, LK
    Moersch, JE
    Morris, RV
    Rogers, AD
    Smith, MD
    Squyres, SW
    Wolff, MJ
    Wyatt, MB
    [J]. SCIENCE, 2004, 305 (5685) : 837 - 842