Prestack seismic data reconstruction and denoising by orientation-dependent tensor decomposition

被引:0
作者
Cavalcante, Quezia [1 ]
Porsani, Milton J. [1 ,2 ]
机构
[1] Univ Fed Bahia, Ctr Pesquisa Geofis & Geol, BR-40170115 Salvador, BA, Brazil
[2] Univ Fed Bahia, Inst Nacl Ciencias & Tecnol Geofis Petr, BR-40170115 Salvador, BA, Brazil
关键词
ANTILEAKAGE FOURIER-TRANSFORM; SINGULAR-VALUE DECOMPOSITION; DATA INTERPOLATION; TRACE INTERPOLATION; LOW-RANK; COMPLETION; REDUCTION; ATTENUATION; MODEL;
D O I
10.1190/GEO2020-0070.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Multidimensional seismic data reconstruction and denoising can be achieved by assuming noiseless and complete data as low-rank matrices or tensors in the frequency-space domain. We have adopted a simple and effective approach to interpolate prestack seismic data that explores the low-rank property of multidimensional signals. The orientation-dependent tensor decomposition represents an alternative to multilinear algebraic schemes. Our method does not need to perform any explicit matricization, only requiring calculation of the so-called covariance matrix for one of the spatial dimensions. The elements of such a matrix are the inner products between the lower dimensional tensors in a convenient direction. The eigenvalue decomposition of the covariance matrix provides the eigenvectors for the reduced-rank approximation of the data tensor. This approximation is used for recovery and denoising, iteratively replacing the missing values. Synthetic and field data examples illustrate the method's effectiveness for denoising and interpolating 4D and 5D seismic data with randomly missing traces.
引用
收藏
页码:V107 / V117
页数:11
相关论文
共 61 条
[1]   3D interpolation of irregular data with a POCS algorithm [J].
Abma, Ray ;
Kabir, Nurul .
GEOPHYSICS, 2006, 71 (06) :E91-E97
[2]  
[Anonymous], 2000, 70 ANN INT M SEG, DOI DOI 10.1190/1.1815859
[3]   Enhancing 3-D Seismic Data Using the t-SVD and Optimal Shrinkage of Singular Value [J].
Anvari, Rasoul ;
Mohammadi, Mokhtar ;
Kahoo, Amin Roshandel .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) :382-388
[4]  
Anvari R, 2017, 2017 3RD IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), P164, DOI 10.1109/ICSPIS.2017.8311609
[5]  
Canales L.L., 1993, PROC SEG TECH PROGRA, P1174
[6]   Robust tensor-completion algorithm for 5D seismic-data reconstruction [J].
Carozzi, Fernanda ;
Sacchi, Mauricio D. .
GEOPHYSICS, 2019, 84 (02) :V97-V109
[7]   Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method [J].
Chen, Yangkang ;
Zhang, Dong ;
Jin, Zhaoyu ;
Chen, Xiaohong ;
Zu, Shaohuan ;
Huang, Weilin ;
Gan, Shuwei .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) :1695-1717
[8]   Multidimensional interpolation using a model-constrained minimum weighted norm interpolation [J].
Chiu, Stephen K. .
GEOPHYSICS, 2014, 79 (05) :V191-V199
[9]   Reconstruction of band-limited signals, irregularly sampled along one spatial direction [J].
Duijndam, AJW ;
Schonewille, MA ;
Hindriks, COH .
GEOPHYSICS, 1999, 64 (02) :524-538
[10]   5D seismic data completion and denoising using a novel class of tensor decompositions [J].
Ely, Gregory ;
Aeron, Shuchin ;
Hao, Ning ;
Kilmer, Misha E. .
GEOPHYSICS, 2015, 80 (04) :V83-V95