Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries

被引:195
作者
Wang, Gang [1 ]
Xiong, Xunhui [1 ]
Xie, Dong [2 ]
Lin, Zhihua [1 ]
Zheng, Jie [1 ]
Zheng, Fenghua [1 ]
Li, Youpeng [1 ]
Liu, Yanzhen [1 ]
Yang, Chenghao [1 ]
Liu, Meilin [3 ]
机构
[1] South China Univ Technol, New Energy Res Inst, Sch Environm & Energy, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Guangdong, Peoples R China
[2] Dongguan Univ Technol, Sch Environm & Civil Engn, Guangdong Engn & Technol Res Ctr Adv Nanomat, Dongguan 523808, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; DOPED GRAPHENE; RATE CAPABILITY; ENERGY-STORAGE; HARD CARBONS; LITHIUM; NANOSHEETS; CAPACITY; CHALLENGES; COMPOSITE;
D O I
10.1039/c8ta09751h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potassium-ion batteries (KIBs) are considered as a promising competitor to other metal-ion battery systems due to their low-cost and large-scale energy storage. However, their development is hindered by poor intercalation property of K ions in electrodes due to the heavier weight and larger size of K ion than those of Li ion. Therefore, achieving an ultra-long cycle life with high capacity and excellent rate capability remains a significant challenge for KIB electrodes. Herein, activated hollow carbon nanospheres (AHCSs), with enlarged interlayer spacing, oxygen-containing functional groups (OCFGs) on the surface and high specific surface area, are proposed as a new anode electrode for high-performance KIBs. Ex situ XRD and TEM results demonstrated that the enlarged interlayer spacing allow more reversible K ion intercalation into the carbon layer and readily accommodated large (de)potassiation strain without fracture, while OCFGs on AHCSs enhanced pseudocapacitance type behavior and specific capacity. Due to the synergistic effect of these structural features, the AHCSs served as anode for KIBs, exhibiting impressive electrochemical properties with high initial charge capacity of 370.2 mA h g(-1) at 0.2 A g(-1), ultra-long cycling life for 5000 cycles at a high current density of 2.0 A g(-1), as well as prominent rate capability of 137.0 mA h g(-1) at 4.0 A g(-1). This study highlights the significant role of interlayer spacing, surface oxygen functionalization and hierarchical porosity of carbon-based anodes in potassium storage.
引用
收藏
页码:24317 / 24323
页数:7
相关论文
共 58 条
[1]  
[Anonymous], ADV ENERGY MAT
[2]   Hard carbons derived from green phenolic resins for Na-ion batteries [J].
Beda, Adrian ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Ghimbeu, Camelia Matei .
CARBON, 2018, 139 :248-257
[3]   Alternative electrochemical energy storage: potassium-based dual-graphite batteries [J].
Beltrop, K. ;
Beuker, S. ;
Heckmann, A. ;
Winter, M. ;
Placke, T. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2090-2094
[4]   Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons [J].
Bhardwaj, Tarun ;
Antic, Aleks ;
Pavan, Barbara ;
Barone, Veronica ;
Fahlman, Bradley D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (36) :12556-12558
[5]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[6]   Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for High-Performance Potassium-Ion Batteries [J].
Chen, Mei ;
Wang, Wei ;
Liang, Xiao ;
Gong, Sheng ;
Liu, Jie ;
Wang, Qian ;
Guo, Shaojun ;
Yang, Huai .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[7]   Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances [J].
Chen, Shuangqiang ;
Huang, Xiaodan ;
Sun, Bing ;
Zhang, Jinqiang ;
Liu, Hao ;
Wang, Guoxiu .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (38) :16199-16207
[8]   Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries [J].
Chen, Yuming ;
Li, Xiaoyan ;
Park, Kyusung ;
Song, Jie ;
Hong, Jianhe ;
Zhou, Limin ;
Mai, Yiu-Wing ;
Huang, Haitao ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (44) :16280-16283
[9]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[10]   Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage [J].
Du, Yichen ;
Zhu, Xiaoshu ;
Zhou, Xiaosi ;
Hu, Lingyun ;
Dai, Zhihui ;
Bao, Jianchun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6787-6791