A novel approach based on the Gauss-vSVR with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting

被引:14
作者
Li, Ming-Wei [1 ]
Geng, Jing [1 ]
Hong, Wei-Chiang [2 ]
Chen, Zhi-Yuan [1 ]
机构
[1] Harbin Engn Univ, Coll Shipbldg Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Oriental Inst Technol, Dept Informat Management, 58,Sec 2,Sichuan Rd, New Taipei 226, Taiwan
基金
中国国家自然科学基金;
关键词
Support vector regression (SVR); Genetic algorithm (GA); Forecasting; Cat mapping function; Cloud theory; Port throughput; PARTICLE SWARM OPTIMIZATION; URBAN TRAFFIC FLOW; GENETIC ALGORITHM; REGRESSION-MODEL; SVM PARAMETERS; NEURAL-NETWORK; SEASONAL SVR; SUPPORT; MACHINES; SELECTION;
D O I
10.1007/s00521-016-2396-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prediction of port throughput is very complicate, and its accuracy is affected by many socio-economic factors, particularly affected by their embedded distributed randomness of these factors and mixed noises produced in the processes of data collection, transformation, and calculation. Firstly, in view of the v-support vector regression hybridized with Gauss function (briefed as Gauss-vSVR model), to well solve the nonlinear and mixed noises, this paper uses this model to simulate the nonlinear evolving system of port throughput series. Then, to look for more suitable parameter combination of this model and take into account that GA still suffers from the problems of trapped into local optima and time-consuming, this study integrates the global chaotic perturbation algorithm by using Cat mapping function and local acceleration search algorithm by employing cloud theory, i.e., abbreviated as chaotic cloud genetic algorithm (CCGA), to well determine the parameter values for an Gauss-vSVR model. Additionally, based on the principal component analysis and correlation analysis method, an input vector decision method (namely IVD) is proposed to identify the final input variables for Gauss-vSVR model. Finally, hybridization of IVD and CCGA with Gauss-vSVR model, namely IGvSVR-CCGA, is proposed for port throughput forecasting. Subsequently, the port throughput data and its associate socio-economic factors of two largest Chinese ports, Shanghai Port and Tianjin Port, are employed as practical examples to test forecast performance. The numerical results indicate that the proposed hybrid forecasting model receives more satisfied forecasting performance than other classical prediction models; in the meanwhile, the CCGA algorithm also obtains higher optimal efficiency than other alternative algorithms.
引用
收藏
页码:S621 / S640
页数:20
相关论文
共 70 条
[1]  
[Anonymous], MICROCOMPUT APPL
[2]  
[Anonymous], COMPUT APPL SOFTW
[3]  
[Anonymous], PATTERN RECOGNITION
[4]  
[Anonymous], JISUANJI YU XIANDAIH
[5]  
[Anonymous], ACTA GEOD CARTOGR SI
[6]   Chaotic logic gate: A new approach in set and design by genetic algorithm [J].
Beyki, Mahmood ;
Yaghoobi, Mahdi .
CHAOS SOLITONS & FRACTALS, 2015, 77 :247-252
[7]  
Box G. E., 2016, Time Series Analysis: Forecasting and Control, V5th
[8]   A genetic algorithm for a self-learning parameterization of an aerodynamic part feeding system for high-speed assembly [J].
Busch, Jan ;
Quirico, Melissa ;
Richter, Lukas ;
Schmidt, Matthias ;
Raatz, Annika ;
Nyhuis, Peter .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2015, 64 (01) :5-8
[9]   Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems [J].
Cachou, Aleister ;
Vazquez, Roberto A. .
NEUROCOMPUTING, 2015, 148 :187-197
[10]   A robust shot transition detection method based on support vector machine in compressed domain [J].
Cao, Jianrong ;
Cai, Anni .
PATTERN RECOGNITION LETTERS, 2007, 28 (12) :1534-1540