Rate-Distortion Performance of Compressive Sensing in Single Pixel Camera

被引:0
作者
Petrovici, Mihai-Alexandru [1 ]
Coltuc, Daniela [1 ]
Datcu, Mihai [1 ,2 ]
Vasile, Tiberius [3 ]
机构
[1] Univ Politehn Bucharest Romania, Res Ctr Spatial Informat, Bucharest, Romania
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst, D-82234 Oberpfaffenhofen, Germany
[3] Natl Inst Laser Plasma & Radiat Phys, Laser Interferometry & Applicat Lab, Bucharest, Romania
来源
2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT) | 2015年
关键词
Compressive sensing; Rate-Distortion; Binary Sensing Matrix; Single Pixel Camera; MATRICES; RECOVERY;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Compressive Sensing is an alternative to the acquisition and compression of sparse signals. One of the CS applications is the single pixel camera that reconsiders the conventional imaging systems. The key part of the camera is a Digital Micro-mirror Device (DMD), which is operated by a binary sensing matrix. The paper objective is to evaluate the CS performances in the case of three different binary sensing matrices - Binary Random (BRandom), Binary Sparse (BSparse) and Low Density Parity Check (LDPC) code - and three sparsifying transforms: Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Total Variation (TV). The study concerns numeric images and it is done from the perspective of the Rate-Distortion characteristic. The experimental results indicate the couple LDPC - TV as the best solution and proves that visually lossless compression can be obtained by this approach.
引用
收藏
页码:1747 / 1751
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1963, Low-Density Parity-Check Codes
[2]  
Candes E., 2005, L1 MAGIC
[3]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[4]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[5]  
Candes T. T. E. J., 2006, COMMUNICATIONS PURE, V59, P1207
[6]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[7]   On compressive sensing applied to radar [J].
Ender, Joachim H. G. .
SIGNAL PROCESSING, 2010, 90 (05) :1402-1414
[8]  
Gesen Z., 2010, SIGN PROC SYST ICSPS, V1, pV1
[9]  
Heidari A., 2009, INFR MILL TER WAV 20, P1
[10]   Sparse Recovery Using Sparse Random Matrices [J].
Indyk, Piotr .
LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 :157-157