Classification of zeta functions of bielliptic surfaces over finite fields

被引:1
作者
Rybakov, S. Yu. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[2] Independent Univ Moscow, Lab Poncelet, Moscow, Russia
[3] Natl Res Univ, Higher Sch Econ, Lab Algebra Geometry & Its Applicat, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
finite field; zeta function; elliptic curve; bielliptic surface;
D O I
10.1134/S0001434616030081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a bielliptic surface over a finite field, and let an elliptic curve B be the Albanese variety of S; then the zeta function of the surface S is equal to the zeta function of the direct product P-1 x B. Therefore, the classification problem for the zeta functions of bielliptic surfaces is reduced to the existence problem for surfaces of a given type with a given Albanese curve. In the present paper, we complete this classification initiated in [1].
引用
收藏
页码:397 / 405
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1985, THEORY NUMBERS ITS A
[2]  
Badescu L., 2001, UNIVERSITEX, DOI 10.1007/978-1-4757-3512-3
[3]  
Bombieri E., 1977, Complex Analysis and Algebraic Geometry, P23
[4]  
DEMAZURE M., 1972, Lecture Notes in Mathematics, V302
[5]  
Deuring M., 1941, Abh. Math. Sem. Hansischen Univ, V14, P197, DOI 10.1007/BF02940746
[6]  
HARTSHORNE R, 1981, ALGEBRAIC GEOMETRY
[7]  
Milne J. S., 2008, ABELIAN VARIETIES
[8]  
MUMFORD D, 1971, ABELIAN VARIETIES
[9]   Zeta functions of bielliptic surfaces over finite fields [J].
Rybakov, S. Yu. .
MATHEMATICAL NOTES, 2008, 83 (1-2) :246-256
[10]   ZETA FUNCTIONS OF CONIC BUNDLES AND DEL PEZZO SURFACES OF DEGREE 4 OVER FINITE FIELDS [J].
Rybakov, Sergey .
MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) :919-926