Hypothesis Testing in High-Throughput Screening for Drug Discovery

被引:13
作者
Prummer, Michael [1 ]
机构
[1] F Hoffmann La Roche & Cie AG, Pharma Res & Early Dev, Small Mol Res, pRED, CH-4070 Basel, Switzerland
关键词
HTS; p-value distribution; false discovery rate; multiple testing; VALIDATION;
D O I
10.1177/1087057111431278
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Following the success of small-molecule high-throughput screening (HTS) in drug discovery, other large-scale screening techniques are currently revolutionizing the biological sciences. Powerful new statistical tools have been developed to analyze the vast amounts of data in DNA chip studies, but have not yet found their way into compound screening. In HTS, characterization of single-point hit lists is often done only in retrospect after the results of confirmation experiments are available. However, for prioritization, for optimal use of resources, for quality control, and for comparison of screens it would be extremely valuable to predict the rates of false positives and false negatives directly from the primary screening results. Making full use of the available information about compounds and controls contained in HTS results and replicated pilot runs, the Z score and from it the p value can be estimated for each measurement. Based on this consideration, we have applied the concept of p-value distribution analysis (PVDA), which was originally developed for gene expression studies, to HTS data. PVDA allowed prediction of all relevant error rates as well as the rate of true inactives, and excellent agreement with confirmation experiments was found.
引用
收藏
页码:519 / 529
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2005, Bioinformatics and Computational Biology Solutions using R and Bioconductor
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Improved statistical methods for hit selection in high-throughput screening [J].
Brideau, C ;
Gunter, B ;
Pikounis, B ;
Liaw, A .
JOURNAL OF BIOMOLECULAR SCREENING, 2003, 8 (06) :634-647
[4]  
Everitt B., 2005, R S PLUS COMPANION M, P221
[5]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[6]   Statistical practice in high-throughput screening data analysis [J].
Malo, N ;
Hanley, JA ;
Cerquozzi, S ;
Pelletier, J ;
Nadon, R .
NATURE BIOTECHNOLOGY, 2006, 24 (02) :167-175
[7]  
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO
[8]  
2
[9]   The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements [J].
Shi, Leming ;
Reid, Laura H. ;
Jones, Wendell D. ;
Shippy, Richard ;
Warrington, Janet A. ;
Baker, Shawn C. ;
Collins, Patrick J. ;
de Longueville, Francoise ;
Kawasaki, Ernest S. ;
Lee, Kathleen Y. ;
Luo, Yuling ;
Sun, Yongming Andrew ;
Willey, James C. ;
Setterquist, Robert A. ;
Fischer, Gavin M. ;
Tong, Weida ;
Dragan, Yvonne P. ;
Dix, David J. ;
Frueh, Felix W. ;
Goodsaid, Federico M. ;
Herman, Damir ;
Jensen, Roderick V. ;
Johnson, Charles D. ;
Lobenhofer, Edward K. ;
Puri, Raj K. ;
Scherf, Uwe ;
Thierry-Mieg, Jean ;
Wang, Charles ;
Wilson, Mike ;
Wolber, Paul K. ;
Zhang, Lu ;
Amur, Shashi ;
Bao, Wenjun ;
Barbacioru, Catalin C. ;
Lucas, Anne Bergstrom ;
Bertholet, Vincent ;
Boysen, Cecilie ;
Bromley, Bud ;
Brown, Donna ;
Brunner, Alan ;
Canales, Roger ;
Cao, Xiaoxi Megan ;
Cebula, Thomas A. ;
Chen, James J. ;
Cheng, Jing ;
Chu, Tzu-Ming ;
Chudin, Eugene ;
Corson, John ;
Corton, J. Christopher ;
Croner, Lisa J. .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1151-1161
[10]   The MicroArray Quality Control (MAQC)-IIII study of common practices for the development and validation of microarray-based predictive models [J].
Shi, Leming ;
Campbell, Gregory ;
Jones, Wendell D. ;
Campagne, Fabien ;
Wen, Zhining ;
Walker, Stephen J. ;
Su, Zhenqiang ;
Chu, Tzu-Ming ;
Goodsaid, Federico M. ;
Pusztai, Lajos ;
Shaughnessy, John D., Jr. ;
Oberthuer, Andre ;
Thomas, Russell S. ;
Paules, Richard S. ;
Fielden, Mark ;
Barlogie, Bart ;
Chen, Weijie ;
Du, Pan ;
Fischer, Matthias ;
Furlanello, Cesare ;
Gallas, Brandon D. ;
Ge, Xijin ;
Megherbi, Dalila B. ;
Symmans, W. Fraser ;
Wang, May D. ;
Zhang, John ;
Bitter, Hans ;
Brors, Benedikt ;
Bushel, Pierre R. ;
Bylesjo, Max ;
Chen, Minjun ;
Cheng, Jie ;
Cheng, Jing ;
Chou, Jeff ;
Davison, Timothy S. ;
Delorenzi, Mauro ;
Deng, Youping ;
Devanarayan, Viswanath ;
Dix, David J. ;
Dopazo, Joaquin ;
Dorff, Kevin C. ;
Elloumi, Fathi ;
Fan, Jianqing ;
Fan, Shicai ;
Fan, Xiaohui ;
Fang, Hong ;
Gonzaludo, Nina ;
Hess, Kenneth R. ;
Hong, Huixiao ;
Huan, Jun .
NATURE BIOTECHNOLOGY, 2010, 28 (08) :827-U109