Efficient fuzzy modeling and evaluation criteria

被引:0
|
作者
Matsushita, S
Furuhashi, T
Tsutsui, H
Uchikawa, Y
机构
来源
FIRST INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, PROCEEDINGS 1997 - KES '97, VOLS 1 AND 2 | 1997年
关键词
fuzzy modeling; fuzzy neural network; nonlinear modeling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical fuzzy modeling using fuzzy neural networks (FNN) is one of the effective approaches for modeling of nonlinear systems. Decision of antecedent structures of fuzzy models of nonlinear systems is made possible by a combination of FNN and genetic algorithm (GA). The disadvantage of this fuzzy modeling method is that the learning of FNN is time consuming. This paper presents an efficient fuzzy modeling method using simple fuzzy inference. The results of fuzzy modeling are heavily dependent on evaluation criteria. This paper also studies effects of evaluation criteria for the decision of the antecedent structure. Numerical experiments are done.
引用
收藏
页码:283 / 288
页数:6
相关论文
共 50 条
  • [1] A framework of fuzzy modeling using genetic algorithms with appropriate combination of evaluation criteria
    Suzuki, T
    Furuhashi, T
    Tsutsui, H
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 1252 - 1259
  • [2] Modeling Trends in the Hierarchical Fuzzy System for Multi-criteria Evaluation of Medical Data
    Prokopowicz, Piotr
    Mikolajewski, Dariusz
    Mikolajewska, Emilia
    Tyburek, Krzysztof
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 3, 2018, 643 : 207 - 219
  • [3] Fuzzy multiple criteria evaluation method
    Borovicka, Adam
    MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 60 - 65
  • [4] Fuzzy knowledge spaces based on β evaluation criteria
    Sun, Wen
    AIMS MATHEMATICS, 2023, 8 (11): : 26840 - 26862
  • [5] Criteria importances in OWA aggregation: An application of fuzzy modeling
    Yager, RR
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1677 - 1682
  • [6] Efficient fuzzy cognitive Modeling for unstructured information
    Wong, Kok Wai
    Gedeon, Tamas D.
    Koczy, Laszlo T.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 358 - +
  • [7] Fuzzy Modeling of Evaluation Logistic Systems
    Brzezinski, M.
    Kijek, M.
    Gontarczyk, M.
    Rykala, L.
    Zelkowski, J.
    TRANSPORT MEANS 2017, PTS I-III, 2017, : 377 - 382
  • [8] FUZZY MODELING - FUNDAMENTALS, CONSTRUCTION AND EVALUATION
    PEDRYCZ, W
    FUZZY SETS AND SYSTEMS, 1991, 41 (01) : 1 - 15
  • [9] A fuzzy trust model using multiple evaluation criteria
    Lee, Keon Myung
    Hwang, KyoungSoon
    Lee, Jee-Hyong
    Kim, Hak-Joon
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 961 - 969
  • [10] Multi Criteria Based Fuzzy Model for Website Evaluation
    Chaudhary, Neha
    Sangwan, O. P.
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 1798 - 1802