Lagrange Interpolation and the Newton-Cotes Formulas on a Bakhvalov Mesh in the Presence of a Boundary Layer

被引:3
作者
Zadorin, A., I [1 ]
Zadorin, N. A. [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
function of one variable; boundary layer; Bakhvalov mesh; Lagrange interpolation polynomial; error estimate;
D O I
10.1134/S0965542522030149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Application of a Lagrange polynomial on a Bakhvalov mesh for the interpolation of a function with large gradients in an exponential boundary layer is studied. The problem is that the use of a Lagrange polynomial on a uniform mesh for interpolation of such a function can lead to errors of order O(1), despite the smallness of the mesh size. The Bakhvalov mesh is widely used for the numerical solution of singularly perturbed problems, and the analysis of interpolation formulas on such a mesh is of interest. Estimates of the error of interpolation by a Lagrange polynomial with an arbitrary number of interpolation nodes on a Bakhvalov mesh are obtained. The result is used to estimate the error of the Newton-Cotes formulas on a Bakhvalov mesh. The results of numerical experiments are presented.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 15 条
[1]  
Bakhvalov N.S., 1987, Numerical methods
[2]  
Bakhvalov NS., 1969, Ussr Comput Phys, V9, P139, DOI [10.1016/0041-5553(69)90038-X, DOI 10.1016/0041-5553(69)90038-X]
[3]   Interpolation on the Bakhvalov Mesh in the Presence of an Exponential Boundary Layer [J].
Blatov, I. A. ;
Zadorin, N. A. .
UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2019, 161 (04) :497-508
[4]  
Ilin A.M., 1969, MAT ZAM, V6, P596
[5]  
Linβ T., 2010, LAYER ADAPTED MESHES, V1985, DOI [10.1007/978-3-642-05134-0, DOI 10.1007/978-3-642-05134-0]
[6]   The necessity of Shishkin decompositions [J].
Linss, T .
APPLIED MATHEMATICS LETTERS, 2001, 14 (07) :891-896
[7]  
Roos H. G., 2019, APPL MATH
[8]  
Shishkin, 2012, FITTED NUMERICAL MET, DOI [10.1142/8410, DOI 10.1142/8410]
[9]  
Shishkin G. I., 1992, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations
[10]   A priori meshes for singularly perturbed quasilinear two-point boundary value problems [J].
Vulanovic, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) :349-366