MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation

被引:121
作者
Dong, Manqing [1 ]
Yuan, Feng [1 ]
Yao, Lina [1 ]
Xu, Xiwei [2 ]
Zhu, Liming [2 ]
机构
[1] Univ New South Wales, Sydney, NSW, Australia
[2] CSIRO, Data 61, Sydney, NSW, Australia
来源
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING | 2020年
关键词
Recommender systems; Cold-start problem; Meta learning;
D O I
10.1145/3394486.3403113
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A common challenge for most current recommender systems is the cold-start problem. Due to the lack of user-item interactions, the fine-tuned recommender systems are unable to handle situations with new users or new items. Recently, some works introduce the meta-optimization idea into the recommendation scenarios, i.e. predicting the user preference by only a few of past interacted items. The core idea is learning a global sharing initialization parameter for all users and then learning the local parameters for each user separately. However, most meta-learning based recommendation approaches adopt model-agnostic meta-learning for parameter initialization, where the global sharing parameter may lead the model into local optima for some users. In this paper, we design two memory matrices that can store task-specific memories and feature-specific memories. Specifically, the feature-specific memories are used to guide the model with personalized parameter initialization, while the task-specific memories are used to guide the model fast predicting the user preference. And we adopt a meta-optimization approach for optimizing the proposed method. We test the model on two widely used recommendation datasets and consider four cold-start situations. The experimental results show the effectiveness of the proposed methods.
引用
收藏
页码:688 / 697
页数:10
相关论文
共 35 条
[1]   Budget-Constrained Item Cold-Start Handling in Collaborative Filtering Recommenders via Optimal Design [J].
Anava, Oren ;
Golan, Shahar ;
Golbandi, Nadav ;
Karnin, Zohar ;
Lempel, Ronny ;
Rokhlenko, Oleg ;
Somekh, Oren .
PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), 2015, :45-54
[2]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[3]   Meta-Learning for User Cold-Start Recommendation [J].
Bharadhwaj, Homanga .
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
[4]   Matrix Factorization Model in Collaborative Filtering Algorithms: A Survey [J].
Bokde, Dheeraj ;
Girase, Sheetal ;
Mukhopadhyay, Debajyoti .
PROCEEDINGS OF 4TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND CONTROL(ICAC3'15), 2015, 49 :136-146
[5]  
Chen F., 2018, ABS180207876 CORR
[6]   Sequential Recommendation with User Memory Networks [J].
Chen, Xu ;
Xu, Hongteng ;
Zhang, Yongfeng ;
Tang, Jiaxi ;
Cao, Yixin ;
Qin, Zheng ;
Zha, Hongyuan .
WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, :108-116
[7]   Addressing Cold Start for Next-song Recommendation [J].
Chou, Szu-Yu ;
Yang, Yi-Hsuan ;
Jang, Jyh-Shing Roger ;
Lin, Yu-Ching .
PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, :115-118
[8]   Sequential Scenario-Specific Meta Learner for Online Recommendation [J].
Du, Zhengxiao ;
Wang, Xiaowei ;
Yang, Hongxia ;
Zhou, Jingren ;
Tang, Jie .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2895-2904
[9]   Neural Semantic Personalized Ranking for item cold-start recommendation [J].
Ebesu, Travis ;
Fang, Yi .
INFORMATION RETRIEVAL JOURNAL, 2017, 20 (02) :109-131
[10]   A survey of active learning in collaborative filtering recommender systems [J].
Elahi, Mehdi ;
Ricci, Francesco ;
Rubens, Neil .
COMPUTER SCIENCE REVIEW, 2016, 20 :29-50