Rise of the machines - recommendations for ecologists when using next generation sequencing for microsatellite development

被引:208
作者
Gardner, Michael G. [1 ,2 ,3 ]
Fitch, Alison J. [1 ]
Bertozzi, Terry [4 ]
Lowe, Andrew J. [2 ,3 ]
机构
[1] Flinders Univ S Australia, Sch Biol Sci, Adelaide, SA 5001, Australia
[2] Univ Adelaide, Sch Earth & Environm Sci, Australian Ctr Evolutionary Biol & Biodivers, Adelaide, SA 5001, Australia
[3] Sci Resource Ctr, State Herbarium, Dept Environm & Heritage, Adelaide, SA 5005, Australia
[4] S Australian Museum, Evolutionary Biol Unit, Adelaide, SA 5000, Australia
关键词
454; GS-FLX; microsatellite development; microsatellite enrichment; molecular ecology; next generation sequencing; FLANKING-REGION SIMILARITIES; COMPUTER-PROGRAM; MARKERS; LOCI; REPEATS; GENESIS; DNA;
D O I
10.1111/j.1755-0998.2011.03037.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next generation sequencing is revolutionizing molecular ecology by simplifying the development of molecular genetic markers, including microsatellites. Here, we summarize the results of the large-scale development of microsatellites for 54 nonmodel species using next generation sequencing and show that there are clear differences amongst plants, invertebrates and vertebrates for the number and proportion of motif types recovered that are able to be utilized as markers. We highlight that the heterogeneity within each group is very large. Despite this variation, we provide an indication of what number of sequences and consequent proportion of a 454 run are required for the development of 40 designable, unique microsatellite loci for a typical molecular ecological study. Finally, to address the challenges of choosing loci from the vast array of microsatellite loci typically available from partial genome runs (average for this study, 2341 loci), we provide a microsatellite development flowchart as a procedural guide for application once the results of a partial genome run are obtained.
引用
收藏
页码:1093 / 1101
页数:9
相关论文
共 35 条
[1]   Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing [J].
Abdelkrim, Jawad ;
Robertson, Bruce C. ;
Stanton, Jo-Ann L. ;
Gemmell, Neil J. .
BIOTECHNIQUES, 2009, 46 (03) :185-+
[2]   ALU REPEATS - A SOURCE FOR THE GENESIS OF PRIMATE MICROSATELLITES [J].
ARCOT, SS ;
WANG, ZY ;
WEBER, JL ;
DEININGER, PL ;
BATZER, MA .
GENOMICS, 1995, 29 (01) :136-144
[3]   Microsatellite variability differs between dinucleotide repeat motifs -: Evidence from Drosophila melanogaster [J].
Bachtrog, D ;
Agis, M ;
Imhof, M ;
Schlötterer, C .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (09) :1277-1285
[4]   Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence [J].
Castoe, Todd A. ;
Poole, Alexander W. ;
Gu, Wanjun ;
de Koning, A. P. Jason ;
Daza, Juan M. ;
Smith, Eric N. ;
Pollock, David D. .
MOLECULAR ECOLOGY RESOURCES, 2010, 10 (02) :341-347
[5]   Two distinct modes of microsatellite mutation processes:: Evidence from the complete genomic sequences of nine species [J].
Dieringer, D ;
Schlötterer, C .
GENOME RESEARCH, 2003, 13 (10) :2242-2251
[6]   Sequencing goes 454 and takes large-scale genomics into the wild [J].
Ellegren, Hans .
MOLECULAR ECOLOGY, 2008, 17 (07) :1629-1631
[7]  
Estoup A., 1999, MICROSATELLITES EVOL, P49
[8]   MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design [J].
Faircloth, Brant C. .
MOLECULAR ECOLOGY RESOURCES, 2008, 8 (01) :92-94
[9]   Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure [J].
Gardner, MG ;
Cooper, SJB ;
Bull, CM ;
Grant, WN .
JOURNAL OF HEREDITY, 1999, 90 (02) :301-304
[10]   Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing [J].
Gilles, Andre ;
Meglecz, Emese ;
Pech, Nicolas ;
Ferreira, Stephanie ;
Malausa, Thibaut ;
Martin, Jean-Francois .
BMC GENOMICS, 2011, 12