SURFACES IN R+3 WITH THE SAME GAUSSIAN CURVATURE INDUCED BY THE EUCLIDEAN AND HYPERBOLIC METRICS

被引:1
作者
Barroso, Nilton [1 ]
Roitman, Pedro [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
minimal surfaces; Euclidean geometry; hyperbolic geometry; Gaussian curvature; Monge-Ampere equations; MINIMAL-SURFACES;
D O I
10.2140/pjm.2015.275.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to construct infinitely many immersions into the upper half-space such that the Gaussian curvatures induced from the ambient Euclidean and hyperbolic metrics coincide. We show how these immersions are related geometrically to classical minimal surfaces in Euclidean space and timelike minimal surfaces in Minkowski space.
引用
收藏
页码:19 / 37
页数:19
相关论文
共 7 条
  • [1] Timelike minimal surfaces via loop groups
    Inoguchi, J
    Toda, M
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2004, 83 (03) : 313 - 355
  • [2] Ivey T. A., 2003, GRADUATE STUDIES MAT, V61
  • [3] Graphs of constant mean curvature in hyperbolic space
    López, R
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 20 (01) : 59 - 75
  • [4] Saddle towers with infinitely many ends
    Mazet, Laurent
    Rodriguez, M. Magdalena
    Traizet, Martin
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 2821 - 2838
  • [5] MILNOR TK, 1990, MICH MATH J, V37, P163
  • [6] Nitsche J. C. C., 1989, LECT MINIMAL SURFACE, V1
  • [7] Tenenblat K., 1998, PITMAN MONOGRAPHS SU, V93