Synthesis and characterization of aluminum particles coated with uniform silica shell

被引:11
作者
Cheng Zhi-Peng [1 ]
Yang Yi [1 ]
Li Feng-sheng [1 ]
Pan Zhen-hua [1 ]
机构
[1] Nanjing Univ Sci & Technol, Natl Special Superfine Particle Engn Res Ctr, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
silica; aluminum particle; coating; core-shell; oxidation;
D O I
10.1016/S1003-6326(08)60066-7
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The silica coated aluminum composite particles were prepared by hydrolysis-condensation polymerization of tetraetbylor-thosilicate(TEOS) on the surface of aluminum particle. The structure, morphology, and properties of the silica coated aluminum were studied. The peaks of Si-O-Si are presented in the Fourier transform infrared (FT-IR) spectrum of the composite particles. The thickness of the silica shell is about 80 nm according to the results of transmission electron microscopy(TEM) and laser particle size analysis, while the mean diameter of the aluminum particle is 7.13 mu m. The mass fraction of silica in the sample was determined by fluorescent X-ray spectrometry(XRF). Result of the thermogravimetric analysis(TGA) indicates that thermal stability of silica coated aluminum particles is better than that of pure aluminum particles at low temperature while more reactive at high temperature.
引用
收藏
页码:378 / 382
页数:5
相关论文
共 19 条
[1]   Molecular dynamics simulations of the oxidation of aluminum nanoparticles [J].
Alavi, S ;
Mintmire, JW ;
Thompson, DL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (01) :209-214
[2]   Inhibition of oxide formation on aluminum nanoparticles by transition metal coating [J].
Foley, TJ ;
Johnson, CE ;
Higa, KT .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4086-4091
[3]   THE DEPOSITION OF SILICA ON CARBON AS A MODEL SYSTEM FOR OXIDATION PROTECTION COATINGS [J].
HOFFMAN, WP ;
PHAN, HT ;
GROSZEK, A .
CARBON, 1995, 33 (04) :509-524
[4]   Monodispersed spherical colloids of Se@CdSe: Synthesis and use as building blocks in fabricating photonic crystals [J].
Jeong, U ;
Kim, JU ;
Xia, YN .
NANO LETTERS, 2005, 5 (05) :937-942
[5]   Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids [J].
Jouet, RJ ;
Warren, AD ;
Rosenberg, DM ;
Bellitto, VJ ;
Park, K ;
Zachariah, MR .
CHEMISTRY OF MATERIALS, 2005, 17 (11) :2987-2996
[6]   Preparation and properties of silica-coated cobalt nanoparticles [J].
Kobayashi, Y ;
Horie, M ;
Konno, M ;
Rodríguez-González, B ;
Liz-Marzán, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7420-7425
[7]   Reactivity of superfine aluminum powders stabilized by aluminum diboride [J].
Kwon, YS ;
Gromov, AA ;
Ilyin, AP .
COMBUSTION AND FLAME, 2002, 131 (03) :349-352
[8]   Electrodeposited Au-Fe, Au-Ni, and Au-Co alloy nanoparticles from aqueous electrolytes [J].
Lu, DL ;
Domen, K ;
Tanaka, K .
LANGMUIR, 2002, 18 (08) :3226-3232
[9]   Surface characterization of metal nanoparticles [J].
Phung, X ;
Groza, J ;
Stach, EA ;
Williams, LN ;
Ritchey, SB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 359 (1-2) :261-268
[10]   Energetics of aluminum combustion [J].
Politzer, P ;
Lane, P ;
Grice, ME .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (31) :7473-7480