Magnetic assembled 3D SERS substrate for sensitive detection of pesticide residue in soil

被引:22
作者
Gong, Tianxun [1 ]
Huang, Yifeng [1 ]
Wei, Zenjiang [1 ]
Huang, Wen [1 ]
Wei, Xiongbang [2 ]
Zhang, Xiaosheng [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Optoelect Sci & Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
3D SERS substrate; self-assembled nanoparticles; magnetic force assisting; hexachlorobenzene; pollutants residue; ENHANCED RAMAN-SCATTERING; GRAPHENE; SPECTROSCOPY; NANOGAP; ARRAYS; PERFORMANCE; MONOLAYER;
D O I
10.1088/1361-6528/ab72b7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional (3D) surface enhanced Raman scattering (SERS) substrates were produced by magnetic force assisting self-assembled nanoparticles in arrayed holes. Compared to '2D' plasmonic structures used in conventional SERS substrates, the 'hot spots' existed on whole depth of the 3D SERS substrates, which greatly enhanced the sensitivity. The prepared 3D SERS substrate was able to detect 4-aminothiophenol with a concentration down to 1 pM. Furthermore, the substrate was applied to detect hexachlorobenzene residue in soil, indicating its great potential for rapid and sensitive detection of extreme low concentrated molecules, especially pollutants residues in foods and environments.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Growth of Silver Nanoparticles by DCMagnetron Sputtering [J].
Asanithi, P. ;
Chaiyakun, S. ;
Limsuwan, P. .
JOURNAL OF NANOMATERIALS, 2012, 2012
[2]   Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips [J].
Banaei, Nariman ;
Moshfegh, Javad ;
Mohseni-Kabir, Arman ;
Houghton, Jean Marie ;
Sun, Yubing ;
Kim, Byung .
RSC ADVANCES, 2019, 9 (04) :1859-1868
[3]   Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay [J].
Banaei, Nariman ;
Foley, Anne ;
Houghton, Jean Marie ;
Sun, Yubing ;
Kim, Byung .
NANOTECHNOLOGY, 2017, 28 (45)
[4]   Fabrication of a Au-polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy [J].
Hu, Xiaotang ;
Xu, Zongwei ;
Li, Kang ;
Fang, Fengzhou ;
Wang, Liyang .
APPLIED SURFACE SCIENCE, 2015, 355 :1168-1174
[5]   Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering [J].
Huang, Zhulin ;
Meng, Guowen ;
Huang, Qing ;
Yang, Yajun ;
Zhu, Chuhong ;
Tang, Chaolong .
ADVANCED MATERIALS, 2010, 22 (37) :4136-+
[6]   Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced Raman scattering [J].
Kim, Kwan ;
Shin, Dongha ;
Kim, Kyung Lock ;
Shin, Kuan Soo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (15) :3747-3752
[7]   In situ SERS monitoring of plasmonic nano-dopants during photopolymerization [J].
Li, Ruoping ;
Li, Yanmeng ;
Han, Junhe ;
Huang, Mingju .
OPTICS LETTERS, 2017, 42 (09) :1712-1715
[8]   Highly Ordered Arrays of Particle-in-Bowl Plasmonic Nanostructures for Surface-Enhanced Raman Scattering [J].
Li, Xianglin ;
Zhang, Yongzhe ;
Shen, Ze Xiang ;
Fan, Hong Jin .
SMALL, 2012, 8 (16) :2548-2554
[9]   Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis [J].
Li, Zhen ;
Wang, Minghong ;
Jiao, Yang ;
Liu, Aihua ;
Wang, Shuyun ;
Zhang, Chao ;
Yang, Cheng ;
Xu, Yuanyuan ;
Li, Chonghui ;
Man, Baoyuan .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 255 :374-383
[10]   Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition [J].
Liu, Donghua ;
Chen, Xiaosong ;
Hu, Yibin ;
Sun, Tai ;
Song, Zhibo ;
Zheng, Yujie ;
Cao, Yongbin ;
Cai, Zhi ;
Cao, Min ;
Peng, Lan ;
Huang, Yuli ;
Du, Lei ;
Yang, Wuli ;
Chen, Gang ;
Wei, Dapeng ;
Shen, Andrew Thye ;
Wei, Dacheng .
NATURE COMMUNICATIONS, 2018, 9