Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies

被引:101
作者
Manchein, Cesar [1 ]
Brugnago, Eduardo L. [2 ]
da Silva, Rafael M. [2 ]
Mendes, Carlos F. O. [3 ]
Beims, Marcus W. [2 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, SC, Brazil
[2] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, Parana, Brazil
[3] Univ Estado Amazonas, Escola Normal Super, BR-69050010 Manaus, Amazonas, Brazil
关键词
DISTANCE CORRELATION; TRANSMISSION DYNAMICS;
D O I
10.1063/5.0009454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we analyze the growth of the cumulative number of confirmed infected cases by a novel coronavirus (COVID-19) until March 27, 2020, from countries of Asia, Europe, North America, and South America. Our results show that (i) power-law growth is observed in all countries; (ii) by using the distance correlation, the power-law curves between countries are statistically highly correlated, suggesting the universality of such curves around the world; and (iii) soft quarantine strategies are inefficient to flatten the growth curves. Furthermore, we present a model and strategies that allow the government to reach the flattening of the power-law curves. We found that besides the social distancing of individuals, of well known relevance, the strategy of identifying and isolating infected individuals in a large daily rate can help to flatten the power-laws. These are the essential strategies followed in the Republic of Korea. The high correlation between the power-law curves of different countries strongly indicates that the government containment measures can be applied with success around the whole world. These measures are scathing and to be applied as soon as possible.
引用
收藏
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 2006, ANN ALLERG ASTHMA IM, V96, pS1, DOI DOI 10.1103/PHYSREVLETT.96.038702
[2]   Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) [J].
Coburn, Brian J. ;
Wagner, Bradley G. ;
Blower, Sally .
BMC MEDICINE, 2009, 7
[3]   Effects of quarantine in six endemic models for infectious diseases [J].
Hethcote, H ;
Ma, Z ;
Liao, SB .
MATHEMATICAL BIOSCIENCES, 2002, 180 :141-160
[4]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[5]  
Khalil K. M., 2012, AGENT BASED MODELING, V33, P205, DOI DOI 10.1007/978-3-642-25755-111
[6]   Global dynamics of a SEIR model with varying total population size [J].
Li, MY ;
Graef, JR ;
Wang, LC ;
Karsai, J .
MATHEMATICAL BIOSCIENCES, 1999, 160 (02) :191-213
[7]   Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia [J].
Li, Qun ;
Guan, Xuhua ;
Wu, Peng ;
Wang, Xiaoye ;
Zhou, Lei ;
Tong, Yeqing ;
Ren, Ruiqi ;
Leung, Kathy S. M. ;
Lau, Eric H. Y. ;
Wong, Jessica Y. ;
Xing, Xuesen ;
Xiang, Nijuan ;
Wu, Yang ;
Li, Chao ;
Chen, Qi ;
Li, Dan ;
Liu, Tian ;
Zhao, Jing ;
Liu, Man ;
Tu, Wenxiao ;
Chen, Chuding ;
Jin, Lianmei ;
Yang, Rui ;
Wang, Qi ;
Zhou, Suhua ;
Wang, Rui ;
Liu, Hui ;
Luo, Yinbo ;
Liu, Yuan ;
Shao, Ge ;
Li, Huan ;
Tao, Zhongfa ;
Yang, Yang ;
Deng, Zhiqiang ;
Liu, Boxi ;
Ma, Zhitao ;
Zhang, Yanping ;
Shi, Guoqing ;
Lam, Tommy T. Y. ;
Wu, Joseph T. ;
Gao, George F. ;
Cowling, Benjamin J. ;
Yang, Bo ;
Leung, Gabriel M. ;
Feng, Zijian .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (13) :1199-1207
[8]   Transmission dynamics and control of severe acute respiratory syndrome [J].
Lipsitch, M ;
Cohen, T ;
Cooper, B ;
Robins, JM ;
Ma, S ;
James, L ;
Gopalakrishna, G ;
Chew, SK ;
Tan, CC ;
Samore, MH ;
Fisman, D ;
Murray, M .
SCIENCE, 2003, 300 (5627) :1966-1970
[9]  
Long Yong-Shang, 2020, ARXIV200312028
[10]  
Maier B. F., 2020, ARXIV200207572V1