Sharp rates of convergence for accumulated spectrograms

被引:15
作者
Abreu, Luis Daniel [1 ]
Pereira, Joao M. [2 ]
Romero, Jose Luis [1 ]
机构
[1] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
基金
奥地利科学基金会;
关键词
Gabor; time-frequency analysis; localization operator; uncertainty principle; spectrogram; phase-space; TIME-FREQUENCY LOCALIZATION; SPHEROIDAL WAVE-FUNCTIONS; VARIANT LINEAR CHANNELS; PHASE-SPACE APPROACH; FOURIER-ANALYSIS; UNCERTAINTY PRINCIPLES; OPERATORS; RETRIEVAL; SIGNALS;
D O I
10.1088/1361-6420/aa8d79
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an inverse problem in time-frequency localization: the approximation of the symbol of a time-frequency localization operator from partial spectral information by the method of accumulated spectrograms (the sum of the spectrograms corresponding to large eigenvalues). We derive a sharp bound for the rate of convergence of the accumulated spectrogram, improving on recent results.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
Abreu L D, IEEE T INF THEORY
[2]   ON ACCUMULATED SPECTROGRAMS [J].
Abreu, Luis Daniel ;
Groechenig, Karlheinz ;
Romero, Jose Luis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) :3629-3649
[3]   An inverse problem for localization operators [J].
Abreu, Luis Daniel ;
Doerfler, Monika .
INVERSE PROBLEMS, 2012, 28 (11)
[4]   Model Space Results for the Gabor and Wavelet Transforms [J].
Ascensi, Gerard ;
Bruna, Joaquim .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) :2250-2259
[5]   Saving phase: Injectivity and stability for phase retrieval [J].
Bandeira, Afonso S. ;
Cahill, Jameson ;
Mixon, Dustin G. ;
Nelson, Aaron A. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) :106-125
[6]  
Bayram M, 2000, NONLINEAR AND NONSTATIONARY SIGNAL PROCESSING, P292
[7]   MEASUREMENT OF RANDOM TIME-VARIANT LINEAR CHANNELS [J].
BELLO, PA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1969, 15 (04) :469-+
[8]   Generalized anti-wick operators with symbols in distributional Sobolev spaces [J].
Boggiatto, P ;
Cordero, E ;
Gröchenig, K .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (04) :427-442
[9]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[10]   TIME FREQUENCY LOCALIZATION OPERATORS - A GEOMETRIC PHASE-SPACE APPROACH [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :605-612