Ion-Radical Pair Separation in Larger Oxidized Water Clusters, (H2O)+n=6-21

被引:22
作者
Herr, Jonathan D.
Steele, Ryan P. [1 ]
机构
[1] Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-ORBITAL METHODS; MAGIC NUMBERS; IONIZED WATER; CATIONS (H2O)(N)(+); ADIABATIC CONNECTION; EXCITATION-ENERGIES; OXIDATION; ELECTRON; CATALYSIS; EVOLUTION;
D O I
10.1021/acs.jpca.6b07465
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structures, properties, and spectroscopic signatures of oxidized water clusters,(H2O)(+)(n=6-21), are examined in this work, to provide fundamental insight into renewable energy and radiological processes. Computational quantum chemistry approaches are employed to sample cluster morphologies, yielding hundreds of low-lying isomers with low barriers to interconversion. The ion-radical pair-separation trend, however, which was observed in previous computational studies and in small-cluster spectroscopy experiments, is shown to continue in this larger cluster size regime. The source of this trend is preferential solvation of the hydronium ion by water, including effects beyond the first solvation shell. The fundamental conclusion of this work, therefore, is that the initially formed ion radical dimer, which has served as a prototypical model of oxidized water, is a nascent species in large, oxidized water clusters and, very likely, bulk water.
引用
收藏
页码:7225 / 7239
页数:15
相关论文
共 86 条
[1]   Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:: The mPW and mPW1PW models [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (02) :664-675
[2]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[3]   Incorrect dissociation behavior of radical ions in density functional calculations [J].
Bally, T ;
Sastry, GN .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (43) :7923-7925
[4]  
Barber J, 2012, Cold Spring Harb Symp Quant Biol, V77, P295, DOI 10.1101/sqb.2012.77.014472
[5]   Inner-Sphere Heterogeneous Electrode Reactions. Electrocatalysis and Photocatalysis: The Challenge [J].
Bard, Allen J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (22) :7559-7567
[6]  
Barnett SM, 2014, MOLECULAR WATER OXIDATION CATALYSIS: A KEY TOPIC FOR NEW SUSTAINABLE ENERGY CONVERSION SCHEMES, P187
[7]  
Barnett SM, 2012, NAT CHEM, V4, P498, DOI [10.1038/NCHEM.1350, 10.1038/nchem.1350]
[8]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[9]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[10]   Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel-Borate Thin Film Electrocatalyst [J].
Bediako, D. Kwabena ;
Surendranath, Yogesh ;
Nocera, Daniel G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (09) :3662-3674