Aerostructural topology optimization using high fidelity modeling

被引:11
作者
Gomes, Pedro [1 ]
Palacios, Rafael [1 ]
机构
[1] Imperial Coll, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Topology optimization; Fluid-structure-interaction; MDO; Discrete adjoint; Multiphysics; ALGORITHM; DESIGN; WINGS;
D O I
10.1007/s00158-022-03234-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the use of density-based topology optimization for the aeroelastic design of very flexible wings. This is achieved with a Reynolds-averaged Navier-Stokes finite volume solver, coupled to a geometrically nonlinear finite element structural solver, to simulate the large-displacement fluid-structure interaction. A gradient-based approach is used with derivatives obtained via a coupled adjoint solver based on algorithmic differentiation. In the example problem, the optimization uses strong coupling effects and the internal topology of the wing to allow mass reduction while maintaining the lift. We also propose a method to accelerate the convergence of the optimization to discrete topologies, which partially mitigates the computational expense of high-fidelity modeling approaches.
引用
收藏
页数:14
相关论文
共 43 条
[1]   Giga-voxel computational morphogenesis for structural design [J].
Aage, Niels ;
Andreassen, Erik ;
Lazarov, Boyan S. ;
Sigmund, Ole .
NATURE, 2017, 550 (7674) :84-+
[2]  
Albring T.A., 2016, 17 AIAA ISSMO MULT A, DOI 10.2514/6.2016-3518
[3]   Level set topology and shape optimization by density methods using cut elements with length scale control [J].
Andreasen, Casper Schousboe ;
Elingaard, Martin Ohrt ;
Aage, Niels .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (02) :685-707
[4]   Hole seeding in level set topology optimization via density fields [J].
Barrera, Jorge L. ;
Geiss, Markus J. ;
Maute, Kurt .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (04) :1319-1343
[5]  
Bendsoe M.P., 1989, Struct. Optim., V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[6]  
Bonet J, 2008, NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, 2ND EDITION, P1, DOI 10.1017/CBO9780511755446
[7]   Topology optimization of non-linear elastic structures and compliant mechanisms [J].
Bruns, TE ;
Tortorelli, DA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (26-27) :3443-3459
[8]   Discrete adjoint methodology for general multiphysics problems A modular and efficient algorithmic outline with implementation in an open-source simulation software [J].
Burghardt, Ole ;
Gomes, Pedro ;
Kattmann, Tobias ;
Economon, Thomas D. ;
Gauger, Nicolas R. ;
Palacios, Rafael .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (01)
[9]   Effects of flow instabilities on the linear analysis of turbomachinery aeroelasticity [J].
Campobasso, MS ;
Giles, MB .
JOURNAL OF PROPULSION AND POWER, 2003, 19 (02) :250-259
[10]   Multiobjective optimal topology design of structures [J].
Chen, TY ;
Wu, SC .
COMPUTATIONAL MECHANICS, 1998, 21 (06) :483-492