Power series rings and projectivity

被引:14
作者
Buchweitz, RO [1 ]
Flenner, H
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
D O I
10.1007/s00229-005-0608-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a formal power series ring A[[X]] over a noetherian ring A is not a projective module unless A is artinian. However, if (A, m) is any local ring, then A[[X]] behaves like a projective module in the sense that Ext(A)(p)(A[[X]], M) = 0 for all m-adically complete A-modules. The latter result is shown more generally for any flat A-module B instead of A[[X]]. We apply the results to the (analytic) Hochschild cohomology over complete noetherian rings.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1972, ELEMENTS MATH COMMUT
[2]   DIE TORSIONSUNTERGRUPPE EINER ABELSCHEN GRUPPE [J].
BAER, R .
MATHEMATISCHE ANNALEN, 1958, 135 (03) :219-234
[3]  
Cartan H., 1999, HOMOLOGICAL ALGEBRA
[4]   Vanishing of local homology [J].
Frankild, A .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (03) :615-630
[5]  
Grothendieck A., 1964, I HAUTES ETUDES SCI, V20
[6]  
JENEN CU, 1972, SPRINGER LECT NOTES, V254
[7]   ON VANISHING OF LIM(I)-ARROW-TO-LEFT [J].
JENSEN, CU .
JOURNAL OF ALGEBRA, 1970, 15 (02) :151-&
[8]  
Loday J. -L., 1992, GRUNDL MATH WISS BD, V301
[9]   DIFFERENTIAL PROPERTIES OF LOCALIZATION OF ANALYTICAL ALGEBRAS [J].
SCHEJA, G ;
STORCH, U .
MATHEMATISCHE ANNALEN, 1972, 197 (02) :137-&
[10]   INFINITE ABELIAN-GROUPS, WHITEHEAD PROBLEM AND SOME CONSTRUCTIONS [J].
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1974, 18 (03) :243-256