A note on Hermite and subelliptic operators

被引:9
作者
Chang, DC [1 ]
Tie, JZ
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Hermite operator; Heisenberg group; sub-Laplacian; Gruhsin operator; heat kernel; Laguerre function;
D O I
10.1007/s10114-004-0336-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we compute the fundamental solution for the Hermite operator with singularity at an arbitrary point y is an element of R-n. We also apply this result to obtain the fundamental solutions for the Grushin operator in R-2 and the sub-Laplacian in the Heisenberg group H-n.
引用
收藏
页码:803 / 818
页数:16
相关论文
共 17 条
[1]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[2]   A note on fundamental solutions [J].
Beals, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (1-2) :369-376
[3]  
Beals R, 1997, B SCI MATH, V121, P1
[4]  
Beals R, 1997, B SCI MATH, V121, P97
[5]  
Beals R, 1997, B SCI MATH, V121, P195
[6]  
BEALS R, 1988, ANN MATH STUDIES, V119
[7]  
BERENSTEIN C, 2001, AMS IP SERIES ADV MA, V22
[8]  
CALIN O, 2003, LOCAL NONSOLVABILITY
[9]   Estimates for spectral projection operators of the sub-Laplacian on the Heisenberg group [J].
Chang, DC ;
Tie, JZ .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 71 (1) :315-347
[10]   Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group [J].
Der-Chen Chang ;
Jingzhi Tie .
The Journal of Geometric Analysis, 2000, 10 (4)