Size dependent magnetic and capacitive performance of MnFe2O4 magnetic nanoparticles

被引:23
作者
Arun, Thirumurugan [1 ]
Kumar, T. Kavin [2 ]
Udayabhaskar, R. [1 ]
Morel, Mauricio J. [1 ]
Rajesh, G. [3 ]
Mangalaraja, R. V. [4 ,5 ]
Akbari-Fakhrabadi, Ali [6 ]
机构
[1] Univ Atacama, Inst Invest Cient & Tecnol IDICTEC, Copayapu 485, Copiapo, Chile
[2] SRM Inst Sci & Technol, SRM Res Inst, Chennai 603203, Tamil Nadu, India
[3] Univ Chile, Dept Phys, FCFM, Santiago, Chile
[4] Univ Concepcion, Dept Mat Engn, Adv Ceram & Nanotechnol Lab, Fac Engn, Concepcion 4070409, Chile
[5] Univ Concepcion, Technol Dev Unit UDT, Coronel Ind Pk, Coronel, Chile
[6] Univ Chile, Dept Mech Engn, Adv Mat Lab, Santiago, Chile
关键词
Magnetic materials; Nanoparticles; Energy storage and conversion; Nanocrystalline materials;
D O I
10.1016/j.matlet.2020.128240
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
MnFe2O4 magnetic nanoparticles (MNPs) are prepared by simple chemical oxidation method with optimized experimental conditions. The particle size is reduced by introducing the ferric ions as a size reducing agent during the chemical reaction. The saturation magnetization of the MnFe2O4 MNPs are tuned between 45 and 67 emu/g. The shift in the particle size distribution is confirmed from the transmission electron microscope (TEM) micrograph. The highest specific capacitance of 415 F/g is achieved for the smaller sized MnFe2O4 MNPs prepared with higher concentration of ferric ions. The results suggest that the ferric ions could be used for the size control of ferrites through chemical oxidation method and the sized reduced MnFe2O4 MNPs could be a suitable choice for the electrochemical supercapacitor applications. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 9 条
[1]   Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications [J].
Arun, Thirumurugan ;
Prabakaran, K. ;
Udayabhaskar, R. ;
Mangalaraja, R., V ;
Akbari-Fakhrabadi, Ali .
APPLIED SURFACE SCIENCE, 2019, 485 :147-157
[2]   Nano hexagonal C3O4 platelets for supercapacitor applications-synthesis and characterization [J].
Arun, Thirumurugan ;
Kumar, T. Kavin ;
Udayabhaskar, R. ;
Mangalaraja, R. V. ;
Akbari-Fakhrabadi, Ali .
MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
[3]   Nickel cobaltite as an emerging material for supercapacitors: An overview [J].
Dubal, Deepak P. ;
Gomez-Romero, Pedro ;
Sankapal, Babasaheb R. ;
Holze, Rudolf .
NANO ENERGY, 2015, 11 :377-399
[4]   Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance [J].
Heng, Bojun ;
Qing, Chen ;
Sun, Daming ;
Wang, Bixiao ;
Wang, Hai ;
Tang, Yiwen .
RSC ADVANCES, 2013, 3 (36) :15719-15726
[5]   Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis [J].
Meher, Sumanta Kumar ;
Justin, P. ;
Rao, G. Ranga .
NANOSCALE, 2011, 3 (02) :683-692
[6]   Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes [J].
Munirathinam, Balakrishnan ;
Pydimukkala, Haveela ;
Ramaswamy, Narayanan ;
Neelakantan, Lakshman .
APPLIED SURFACE SCIENCE, 2015, 355 :1245-1253
[7]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[8]   Electrochemical double-layer capacitance of MoS2 nanowall films [J].
Soon, Jia Mei ;
Loh, Kian Ping .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (11) :A250-A254
[9]  
ZHENG JP, 1995, J ELECTROCHEM SOC, V142, pL6, DOI 10.1149/1.2043984