Late-Time Vortex Dynamics of Rayleigh-Taylor Instability

被引:11
作者
Sohn, Sung-Ik [1 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Math, Kangnung 210702, Gangwon, South Korea
关键词
Rayleigh-Taylor instability; vortex dynamics; vortex sheet; bubble; spike; point vortex method; SHEET ROLL-UP; NUMERICAL SIMULATIONS; COMPUTATION; FLUIDS; MODEL; FLOW;
D O I
10.1143/JPSJ.80.084401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate late-time dynamics of the Rayleigh-Taylor instability, from long-time computations using an adaptive vortex method. The vortex method successfully simulates the complex disordered interfaces of the Rayleigh-Taylor instability with fine resolutions. The numerical results show that at a late time, the tails of the bubble and spike are elongated, the interface has a secondary instability, and the inner roll-up is highly distorted. In a weak density stratification, both the bubble and spike exhibit late-time reaccelerations, after converging to constant velocities. It is found that strong vorticities are evolved at the tails of the bubble and spike, and drive the acceleration of the bubble and spike.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Dynamics of two-dimensional Rayleigh-Taylor bubbles for fluids with a finite density contrast [J].
Abarzhi, SI ;
Glimm, J ;
Lin, AD .
PHYSICS OF FLUIDS, 2003, 15 (08) :2190-2197
[2]   MODEL OF RAYLEIGH-TAYLOR INSTABILITY [J].
AREF, H ;
TRYGGVASON, G .
PHYSICAL REVIEW LETTERS, 1989, 62 (07) :749-752
[3]   VORTEX SIMULATIONS OF THE RAYLEIGH-TAYLOR INSTABILITY [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1980, 23 (08) :1485-1490
[4]  
BIRKhOFF G., 1962, P S APPL MATH, VXIII, P55, DOI DOI 10.1090/PSAPM/013/0137423
[5]   A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration [J].
Dimonte, G ;
Youngs, DL ;
Dimits, A ;
Weber, S ;
Marinak, M ;
Wunsch, S ;
Garasi, C ;
Robinson, A ;
Andrews, MJ ;
Ramaprabhu, P ;
Calder, AC ;
Fryxell, B ;
Biello, J ;
Dursi, L ;
MacNeice, P ;
Olson, K ;
Ricker, P ;
Rosner, R ;
Timmes, F ;
Tufo, H ;
Young, YN ;
Zingale, M .
PHYSICS OF FLUIDS, 2004, 16 (05) :1668-1693
[6]   Diffuse interface model for incompressible two-phase flows with large density ratios [J].
Ding, Hang ;
Spelt, Peter D. M. ;
Shu, Chang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :2078-2095
[7]  
Glimm J., 2002, ACTA MATH APPL SIN-E, V18, P1
[8]   Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J].
Goncharov, VN .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :4-134502
[9]   A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J].
He, XY ;
Chen, SY ;
Zhang, RY .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :642-663
[10]   Long time computation of two-dimensional vortex sheet by point vortex method [J].
Kim, SC ;
Lee, JY ;
Sohn, SI .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (08) :1968-1976