Periodic problem for the nonlinear damped wave equation with convective nonlinearity

被引:3
作者
Carreno-Bolanos, Rafael [1 ]
Juarez-Campos, Beatriz [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Inst Tecnol Morelia, Tecnol Nacl Mexico, Morelia, Michoacan, Mexico
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
关键词
asymptotics of solutions; convective nonlinearity; nonlinear damped wave equations; periodic problem;
D O I
10.1111/sapm.12316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear damped wave equation with a linear pumping and a convective nonlinearity. We consider the solutions, which satisfy the periodic boundary conditions. Our aim is to prove global existence of solutions to the periodic problem for the nonlinear damped wave equation by applying the energy-type estimates and estimates for the Green operator. Moreover, we study the asymptotic profile of global solutions.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 2006, Lecture Notes in Mathematics
[2]  
[Anonymous], 1986, NONLINEAR OSCILLATIO
[3]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[4]  
Chen J, 2012, ACTA MATH SCI, V32, P1167
[6]  
Hadeler K. P, 1999, LECT NOTES MATH, V1714, DOI DOI 10.1007/BFB0092376
[7]   Asymptotics of solutions to the periodic problem for the nonlinear damped wave equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. ;
Rodriguez-Ceballos, Joel A. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (03) :355-369
[8]   The Cauchy problem for the nonlinear damped wave equation with slowly decaying data [J].
Ikeda, Masahiro ;
Inui, Takahisa ;
Wakasugi, Yuta .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (02)
[9]  
Kac M., 1974, Rocky Mt. J. Math, V4, P497, DOI [DOI 10.1216/RMJ-1974-4-3-497, 10.1216/RMJ-1974-4-3-497]
[10]  
[Кайкина Елена Игоревна Kaikina Elena Igorevna], 2013, [Известия Российской академии наук. Серия математическая, Izvestiya: Mathematics, Izvestiya Rossiiskoi akademii nauk. Seriya matematicheskaya], V77, P97, DOI 10.4213/im7957