Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction

被引:96
作者
Ashok, J. [1 ]
Kathiraser, Y. [1 ]
Ang, M. L. [1 ]
Kawi, S. [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
关键词
IRON-ALUMINA CATALYSTS; HYDROGEN-PRODUCTION; MODEL-COMPOUND; GASIFICATION; METHANE; TOLUENE; PERFORMANCE; PYROLYSIS; REMOVAL; ETHANOL;
D O I
10.1039/c5cy00650c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we describe the synthesis of Ni/SiO2 and Ni-Cu/SiO2 catalysts derived from phyllosilicate structures (Ni/SiO2P and Ni-Cu/SiO2P, respectively) for steam reforming of biomass tar reaction. The steam reforming of biomass tar reaction was investigated with cellulose as a biomass model compound. The influence of steam-to-carbon ratio and reaction temperatures was also explored. Overall, the catalysts synthesized via phyllosilicate structures gave better catalytic performance than the catalysts prepared by the impregnation method. An optimum catalyst composition of 30Ni-5Cu/SiO2P gave superior catalytic performance in terms of stability and activity compared to all other catalysts. At 600 degrees C, about 78% of biomass was converted to gaseous products over 30Ni-5Cu/SiO2P, which is the highest among all the catalysts tested. Temperature-programmed reduction results indicate that the metal-support interaction of Ni/SiO2P catalyst prepared via phyllosilicate structures is stronger due to the unique layered structure compared to that prepared by conventional impregnation (10Ni/SiO2). The formation of a unique layered structure in Ni/SiO2P and Ni-Cu/SiO2P was also confirmed through TEM analysis. The surface elemental composition results obtained from XPS analysis show that the Cu/Ni surface molar ratio for Ni-Cu/SiO2P catalysts is consistent with the actual molar ratio values obtained from SEM-EDX analysis. This result suggests that the bimetallic catalysts synthesized via the phyllosilicate structure route can yield uniformly distributed alloy species.
引用
收藏
页码:4398 / 4409
页数:12
相关论文
共 55 条
[1]   Bimetallic catalysts for upgrading of biomass to fuels and chemicals [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (24) :8075-8098
[2]   Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions [J].
Ashok, J. ;
Kathiraser, Y. ;
Ang, M. L. ;
Kawi, S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 172 :116-128
[3]   Steam reforming of biomass tar model compound at relatively low steam-to-carbon condition over CaO-doped nickel-iron alloy supported over iron-alumina catalysts [J].
Ashok, J. ;
Kawi, S. .
APPLIED CATALYSIS A-GENERAL, 2015, 490 :24-35
[4]   Nickel-Iron Alloy Supported over Iron-Alumina Catalysts for Steam Reforming of Biomass Tar Model Compound [J].
Ashok, J. ;
Kawi, S. .
ACS CATALYSIS, 2014, 4 (01) :289-301
[5]   Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO-Al2O3 catalytic systems [J].
Ashok, J. ;
Kawi, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (32) :13938-13949
[6]   Catalytic Decomposition of Methane to Hydrogen and Carbon Nanofibers over Ni-Cu-SiO2 Catalysts [J].
Ashok, Jangam ;
Reddy, Padigapati Shiva ;
Raju, Gangadhara ;
Subrahmanyam, Machiraju ;
Venugopal, Akula .
ENERGY & FUELS, 2009, 23 (1-2) :5-13
[7]   STEAM GASIFICATION OF BIOMASS WITH NICKEL SECONDARY CATALYSTS [J].
BAKER, EG ;
MUDGE, LK ;
BROWN, MD .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1987, 26 (07) :1335-1339
[8]   Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel [J].
Blanco, Paula H. ;
Wu, Chunfei ;
Onwudili, Jude A. ;
Williams, Paul T. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 134 :238-250
[9]   Ni/SiO2 materials prepared by deposition-precipitation:: Influence of the reduction conditions and mechanism of formation of metal particles [J].
Burattin, P ;
Che, M ;
Louis, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (45) :10482-10489
[10]   Catalytic Steam Gasification of Cellulose Using Reactive Flash Volatilization [J].
Chan, Fan Liang ;
Tanksale, Akshat .
CHEMCATCHEM, 2014, 6 (09) :2727-2739