ORBITS OF THE ACTIONS OF ODD-ORDER SOLVABLE GROUPS

被引:3
作者
Yang, Yong [1 ]
机构
[1] Univ Wisconsin Parkside, Kenosha, WI 53141 USA
关键词
Regular orbits; Representation of solvable groups; CHARACTER DEGREES; REGULAR ORBITS; SUBGROUPS;
D O I
10.1080/00927872.2010.533725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that V is a finite faithful irreducible G-module where G is a finite solvable group of odd order. We prove if the action is quasi-primitive, then either F(G) is abelian or G has at least 212 regular orbits on V. As an application, we prove that when V is a finite faithful completely reducible G-module for a solvable group G of odd order, then there exists v is an element of V such that C-G(v) subset of F-2(G) (where F-2(G) is the 2nd ascending Fitting subgroup of G). We also generalize a result of Espuelas and Navarro. Let G be a group of odd order and let H be a Hall pi-subgroup of G. Let V be a faithful G-module over a finite field of characteristic 2, then there exists v is an element of V such that C-H(v) subset of O-pi(G).
引用
收藏
页码:565 / 574
页数:10
相关论文
共 9 条
[1]   Intersections of odd order Hall subgroups [J].
Dolfi, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :61-66
[2]   REGULAR ORBITS ON SYMPLECTIC MODULES [J].
ESPUELAS, A .
JOURNAL OF ALGEBRA, 1991, 138 (01) :1-12
[3]   LARGE CHARACTER DEGREES OF GROUPS OF ODD ORDER [J].
ESPUELAS, A .
ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (03) :499-505
[4]   REGULAR ORBITS OF HALL PI-SUBGROUPS [J].
ESPUELAS, A ;
NAVARRO, G .
MANUSCRIPTA MATHEMATICA, 1991, 70 (03) :255-260
[5]  
GAP The GAP Group, 2002, GAP GROUP GAP GROUPS
[6]  
Isaacs I. M., 2008, Grad. Stud. Math., V92
[7]  
Manz O., 1993, Representations of Solvable Groups, V185
[8]   Orbit sizes, character degrees and Sylow subgroups [J].
Moretó, A ;
Wolf, TR .
ADVANCES IN MATHEMATICS, 2004, 184 (01) :18-36
[9]   SUPERSOLVABLE AUTOMORPHISM-GROUPS OF SOLVABLE-GROUPS [J].
TURULL, A .
MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) :47-73