Pair correlation of zeros of the real and imaginary parts of the Riemann zeta-function

被引:0
作者
Gonek, Steven M. [1 ]
Ki, Haseo [2 ,3 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Yonsei Univ, Dept Math, Seoul 03722, South Korea
[3] Korea Inst Adv Study, Seoul, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Riernann zeta-function; Zeros; Simple zeros; Pair correlation;
D O I
10.1016/j.jnt.2017.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if the Riemann Hypothesis is true for the Riemann zeta-function, zeta(s), and 0 < alpha < 1/2, then all but a finite number of the zeros of R zeta(a, it), I zeta(a + it), and similar functions are simple. We also study the pair correlation of the zeros of these functions assuming the Riemann Hypothesis is true and 0 < a <= 1/2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 61
页数:27
相关论文
共 5 条
[1]   On vertical zeros of Rζ(s) and Sζ(s) [J].
Garaev, MZ .
ACTA ARITHMETICA, 2003, 108 (03) :245-251
[2]   On the zeros of sums of the Riemann zeta function [J].
Ki, Haseo .
JOURNAL OF NUMBER THEORY, 2008, 128 (09) :2704-2755
[3]  
Montgomery H. L., 1973, P S PURE MATH, V24, P181
[4]   HILBERTS INEQUALITY [J].
MONTGOMERY, HL ;
VAUGHAN, RC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (MAY) :73-82
[5]  
Titchmarsh EG., 1986, THEORY RIEMANN ZETA