Blow-up phenomena for a pseudo-parabolic equation

被引:63
作者
Luo, Peng [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
pseudo-parabolic equation; blow up; bounds for blow-up time; exponential decay; LOWER BOUNDS; PSEUDOPARABOLIC EQUATION; TIME; EXISTENCE;
D O I
10.1002/mma.3253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semilinear pseudo- parabolic equation u(t) - Delta(u) - Delta u(t) = u(p). By the means of a differential inequality technique, we obtain a lower bound for blow-up time if p and the initial value satisfy some conditions. Also, we establish a blow-up criterion and an upper bound for blow-up time under some conditions as well as a nonblow-up and exponential decay under some other conditions. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:2636 / 2641
页数:6
相关论文
共 16 条
[1]   Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source [J].
Baghaei, Khadijeh ;
Ghaemi, Mohammad Bagher ;
Hesaaraki, Mahmoud .
APPLIED MATHEMATICS LETTERS, 2014, 27 :49-52
[2]  
Benedetto E.D., 1981, INDIANA U MATH J, V30, P821
[3]   LOWER BOUNDS FOR BLOW-UP TIME IN SOME NON-LINEAR PARABOLIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS [J].
Enache, Cristian .
GLASGOW MATHEMATICAL JOURNAL, 2011, 53 :569-575
[4]  
Jumpen W., 2010, J MATH SCI ADV APPL, V5, P209
[5]  
Korpusov M.O., 2003, COMP MATH MATH PHYS, V43, P1765
[6]   Asymptotic behaviour of solutions to some pseudoparabolic equations [J].
Liu, Yan ;
Jiang, Weisheng ;
Huang, Falun .
APPLIED MATHEMATICS LETTERS, 2012, 25 (02) :111-114
[7]   Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation [J].
Padrón, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) :2739-2756
[8]   Blow-up phenomena for some nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3495-3502
[9]   Lower bounds for blow-up time in parabolic problems under Dirichlet conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1196-1205
[10]   Bounds for blow-up time for the heat equation under nonlinear boundary conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :1289-1296