Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε-caprolactone) scaffolds

被引:117
|
作者
Domingos, M. [1 ,2 ,3 ]
Chiellini, F. [2 ,3 ]
Gloria, A. [4 ]
Ambrosio, L. [4 ]
Bartolo, P. [1 ]
Chiellini, E. [2 ,3 ]
机构
[1] Polytech Inst Leiria IPL, Ctr Rapid & Sustainable Prod Dev, Leiria, Portugal
[2] Univ Pisa, Lab Bioact Polymer Mat Biomed & Environm Applicat, Pisa, Italy
[3] Univ Pisa, Dept Chem & Ind Chem, Pisa, Italy
[4] CNR, Inst Composite & Biomed Mat, Naples, Italy
关键词
Mechanical properties of materials; Biotechnology; Biomanufacturing; Scaffolds; Process parameters; Morphological properties; POLYCAPROLACTONE SCAFFOLDS; POROUS SCAFFOLDS; TISSUE; CELLS; REGENERATION; FABRICATION; NANOFIBERS; OSTEOBLAST;
D O I
10.1108/13552541211193502
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - This paper aims to report a detailed study regarding the influence of process parameters on the morphological/mechanical properties of poly(epsilon-caprolactone) (PCL) scaffolds manufactured by using a novel extrusion-based system that is called BioExtruder. Design/methodology/approach - In this study the authors focused investigations on four parameters, namely the liquefier temperature (LT), screw rotation velocity (SRV), deposition velocity (DV) and slice thickness (ST). Scaffolds were fabricated by employing three different values of each parameter. Through a series of trials, scaffolds were manufactured varying iteratively one parameter while maintaining constant the other ones. The morphology of the structures was investigated using a scanning electron microscope (SEM), whilst the mechanical performance was assessed though compression tests. Findings - Experimental results highlight a direct influence of the process parameters on the PCL scaffolds properties. In particular, DV and SRV have the highest influence in terms of road width (RW) and consequently on the porosity and mechanical behaviour of the structures. Research limitations/implications - The effect of process and design parameters on the biological response of scaffolds is currently under investigation. Originality/value - The output of this work provides a major insight into the effect of process parameters on the morphological/mechanical properties of PCL scaffolds. Moreover, the potential and feasibility of this novel extrusion-based system open a new opportunity to study how structural features may influence the characteristics and performances of the scaffolds, enabling the development of integrated biomechanical models that can be used in CAD systems to manufacture customized structures for tissue regeneration.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [31] Development of Functionalized Poly(ε-caprolactone)/Hydroxyapatite Scaffolds via Electrospinning 3D for Enhanced Bone Regeneration
    Lima, Maria Jose da Silva
    de Melo, Etelino Feijo
    Alves, Kleber G. B.
    de Sa, Fabricio Bezerra
    Alves Jr, Severino
    ACS OMEGA, 2024, 9 (45): : 45035 - 45046
  • [32] Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds
    Fernandez, Jorge
    Auzmendi, Oneka
    Amestoy, Hegoi
    Diez-Torre, Alejandro
    Sarasua, Jose-Ramon
    EUROPEAN POLYMER JOURNAL, 2017, 94 : 208 - 221
  • [33] Effect of 3D Printing Process Parameters and Heat Treatment Conditions on the Mechanical Properties and Microstructure of PEEK Parts
    Zhen, Honglei
    Zhao, Bin
    Quan, Long
    Fu, Junyu
    POLYMERS, 2023, 15 (09)
  • [34] Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications
    Moetazedian, Amirpasha
    Gleadall, Andrew
    Han, Xiaoxiao
    Silberschmidt, Vadim V.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 102
  • [35] Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage
    Can-Herrera, L. A.
    Oliva, A. I.
    Dzul-Cervantes, M. A. A.
    Pacheco-Salazar, O. F.
    Cervantes-Uc, J. M.
    POLYMERS, 2021, 13 (04) : 1 - 16
  • [36] Enzymatic degradation of 3D scaffolds of starch-poly-(ε-caprolactone) prepared by supercritical fluid technology
    Duarte, Ana Rita C.
    Mano, Joao F.
    Reis, Rui L.
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (10) : 2110 - 2117
  • [37] Morphological, thermal, and mechanical properties of poly(ε-caprolactone)/poly(ε-caprolactone)-grafted-cellulose nanocrystals mats produced by electrospinning
    Bellani, Caroline F.
    Pollet, Eric
    Hebraud, Anne
    Pereira, Fabiano V.
    Schlatter, Guy
    Averous, Luc
    Bretas, Rosario E. S.
    Branciforti, Marcia C.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (21)
  • [38] A comparison between β-tricalcium phosphate verse chitosan poly-caprolactone-based 3D melt extruded composite scaffolds
    Yoshida, Minami
    Turner, Paul R.
    McAdam, Christopher John
    Ali, Mohammed Azam
    Cabral, Jaydee D.
    BIOPOLYMERS, 2022, 113 (04)
  • [39] Novel poly(ε-caprolactone) scaffolds comprised of tailored core/shell-structured filaments using 3D plotting technique
    Choi, Jae-Won
    Lee, Kwan
    Koh, Young-Hag
    Kim, Hyoun-Ee
    MATERIALS LETTERS, 2020, 269
  • [40] Mechanical properties of porous ceramic scaffolds made by 3D printing
    Seitz, H
    Irsen, SH
    Leukers, B
    Rieder, W
    Tille, C
    VIRTUAL MODELING AND RAPID MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2005, : 109 - 113