Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε-caprolactone) scaffolds

被引:117
|
作者
Domingos, M. [1 ,2 ,3 ]
Chiellini, F. [2 ,3 ]
Gloria, A. [4 ]
Ambrosio, L. [4 ]
Bartolo, P. [1 ]
Chiellini, E. [2 ,3 ]
机构
[1] Polytech Inst Leiria IPL, Ctr Rapid & Sustainable Prod Dev, Leiria, Portugal
[2] Univ Pisa, Lab Bioact Polymer Mat Biomed & Environm Applicat, Pisa, Italy
[3] Univ Pisa, Dept Chem & Ind Chem, Pisa, Italy
[4] CNR, Inst Composite & Biomed Mat, Naples, Italy
关键词
Mechanical properties of materials; Biotechnology; Biomanufacturing; Scaffolds; Process parameters; Morphological properties; POLYCAPROLACTONE SCAFFOLDS; POROUS SCAFFOLDS; TISSUE; CELLS; REGENERATION; FABRICATION; NANOFIBERS; OSTEOBLAST;
D O I
10.1108/13552541211193502
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - This paper aims to report a detailed study regarding the influence of process parameters on the morphological/mechanical properties of poly(epsilon-caprolactone) (PCL) scaffolds manufactured by using a novel extrusion-based system that is called BioExtruder. Design/methodology/approach - In this study the authors focused investigations on four parameters, namely the liquefier temperature (LT), screw rotation velocity (SRV), deposition velocity (DV) and slice thickness (ST). Scaffolds were fabricated by employing three different values of each parameter. Through a series of trials, scaffolds were manufactured varying iteratively one parameter while maintaining constant the other ones. The morphology of the structures was investigated using a scanning electron microscope (SEM), whilst the mechanical performance was assessed though compression tests. Findings - Experimental results highlight a direct influence of the process parameters on the PCL scaffolds properties. In particular, DV and SRV have the highest influence in terms of road width (RW) and consequently on the porosity and mechanical behaviour of the structures. Research limitations/implications - The effect of process and design parameters on the biological response of scaffolds is currently under investigation. Originality/value - The output of this work provides a major insight into the effect of process parameters on the morphological/mechanical properties of PCL scaffolds. Moreover, the potential and feasibility of this novel extrusion-based system open a new opportunity to study how structural features may influence the characteristics and performances of the scaffolds, enabling the development of integrated biomechanical models that can be used in CAD systems to manufacture customized structures for tissue regeneration.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [21] Investigation into relationships between design parameters and mechanical properties of 3D printed PCL/nHAp bone scaffolds
    Yazdanpanah, Zahra
    Sharma, Nitin Kumar
    Zimmerling, Amanda
    Cooper, David M. L.
    Johnston, James D.
    Chen, Xiongbiao
    PLOS ONE, 2023, 18 (07):
  • [22] 3D printed poly(lactic acid)/poly(ε-caprolactone)/graphene ε-caprolactone)/graphene nanocomposite scaffolds for peripheral nerve tissue engineering
    Gerdefaramarzi, Reyhane Soltani
    Ebrahimian-Hosseinabadi, Mehdi
    Khodaei, Mohammad
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (09)
  • [23] Design Data and Finite Element Analysis of 3D Printed Poly(ε-Caprolactone)-Based Lattice Scaffolds: Influence of Type of Unit Cell, Porosity, and Nozzle Diameter on the Mechanical Behavior
    Sala, Riccardo
    Regondi, Stefano
    Pugliese, Raffaele
    ENG, 2022, 3 (01): : 9 - 23
  • [24] Experimental Characterization and Finite Element Modeling of the Effects of 3D Bioplotting Process Parameters on Structural and Tensile Properties of Polycaprolactone (PCL) Scaffolds
    Narayanan, Lokesh Karthik
    Shirwaiker, Rohan A.
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [25] Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK
    Pulipaka, Aditya
    Gide, Kunal Manoj
    Beheshti, Ali
    Bagheri, Z. Shaghayegh
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 85 : 368 - 386
  • [26] Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds
    Juan, Po-Kai
    Fan, Fang-Yu
    Lin, Wei-Chun
    Liao, Pei-Bang
    Huang, Chiung-Fang
    Shen, Yung-Kang
    Ruslin, Muhammad
    Lee, Chen-Han
    POLYMERS, 2021, 13 (16)
  • [27] The effect of 3D printing on the morphological and mechanical properties of polycaprolactone filament and scaffold
    Soufivand, Anahita Ahmadi
    Abolfathi, Nabiollah
    Hashemi, Ata
    Lee, Sang Jin
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1038 - 1046
  • [28] 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating
    Ghosh, Sagnik
    Yadav, Anilkumar
    Rani, Sweety
    Takkar, Sonam
    Kulshreshtha, Ritu
    Nandan, Bhanu
    Srivastava, Rajiv K.
    LANGMUIR, 2023, 39 (05) : 1927 - 1946
  • [29] Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions
    Hu, Yang
    Wang, Jingguang
    Li, Xin
    Hu, Xiaoxia
    Zhou, Wuyi
    Dong, Xianming
    Wang, Chaoyang
    Yang, Zhuohong
    Binks, Bernard P.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 545 : 104 - 115
  • [30] Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction
    Garcia, Alejandro Garcia
    Hebraud, Anne
    Duval, Jean-Luc
    Wittmer, Corinne R.
    Gaut, Ludovic
    Duprez, Delphine
    Egles, Christophe
    Bedoui, Fahmi
    Schlatter, Guy
    Legallais, Cecile
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (09): : 3317 - 3326