Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization

被引:1128
作者
Shuai, Li [1 ]
Amiri, Masoud Talebi [1 ]
Questell-Santiago, Ydna M. [1 ]
Heroguel, Florent [1 ]
Li, Yanding [2 ,3 ]
Kim, Hoon [2 ,4 ]
Meilan, Richard [5 ]
Chapple, Clint [6 ]
Ralph, John [2 ,3 ,4 ]
Luterbacher, Jeremy S. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Sustainable & Catalyt Proc, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
[2] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Madison, WI 53726 USA
[3] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[5] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
基金
瑞士国家科学基金会;
关键词
GAMMA-VALEROLACTONE; SUGAR; ETHANOL; CATALYSTS;
D O I
10.1126/science.aaf7810
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole% of Klason lignin for beech and 78 mole% for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions.
引用
收藏
页码:329 / 333
页数:6
相关论文
共 28 条
[1]   Monolignol ferulate conjugates are naturally incorporated into plant lignins [J].
Karlen, Steven D. ;
Zhang, Chengcheng ;
Peck, Matthew L. ;
Smith, Rebecca A. ;
Padmakshan, Dharshana ;
Helmich, Kate E. ;
Free, Heather C. A. ;
Lee, Seonghee ;
Smith, Bronwen G. ;
Lu, Fachuang ;
Sedbrook, John C. ;
Sibout, Richard ;
Grabber, John H. ;
Runge, Troy M. ;
Mysore, Kirankumar S. ;
Harris, Philip J. ;
Bartley, Laura E. ;
Ralph, John .
SCIENCE ADVANCES, 2016, 2 (10)
[2]   NMR Assignment for Diaryl Ether Structures (4-O5 Structures) in Pine Wood Lignin [J].
Li, Yanding ;
Akiyama, Takuya ;
Yokoyama, Tomoya ;
Matsumoto, Yuji .
BIOMACROMOLECULES, 2016, 17 (06) :1921-1929
[3]  
Luterbacher JS, 2014, GREEN CHEM, V16, P4816, DOI [10.1039/c4gc01160k, 10.1039/C4GC01160K]
[4]   Lignin monomer production integrated into the γ-valerolactone sugar platform [J].
Luterbacher, Jeremy S. ;
Azarpira, Ali ;
Motagamwala, Ali H. ;
Lu, Fachuang ;
Ralph, John ;
Dumesic, James A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (09) :2657-2663
[5]   Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone [J].
Luterbacher, Jeremy S. ;
Rand, Jacqueline M. ;
Alonso, David Martin ;
Han, Jeehoon ;
Youngquist, J. Tyler ;
Maravelias, Christos T. ;
Pfleger, Brian F. ;
Dumesic, James A. .
SCIENCE, 2014, 343 (6168) :277-280
[6]   Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products [J].
Pan, XJ ;
Arato, C ;
Gilkes, N ;
Gregg, D ;
Mabee, W ;
Pye, K ;
Xiao, ZZ ;
Zhang, X ;
Saddler, J .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (04) :473-481
[7]   A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass [J].
Parsell, Trenton ;
Yohe, Sara ;
Degenstein, John ;
Jarrell, Tiffany ;
Klein, Ian ;
Gencer, Emre ;
Hewetson, Barron ;
Hurt, Matt ;
Kim, Jeong Im ;
Choudhari, Harshavardhan ;
Saha, Basudeb ;
Meilan, Richard ;
Mosier, Nathan ;
Ribeiro, Fabio ;
Delgass, W. Nicholas ;
Chapple, Clint ;
Kenttamaa, Hilkka I. ;
Agrawal, Rakesh ;
Abu-Omar, Mahdi M. .
GREEN CHEMISTRY, 2015, 17 (03) :1492-1499
[8]   LIGNIN AND RELATED COMPOUNDS .I. A COMPARATIVE STUDY OF CATALYSTS FOR LIGNIN HYDROGENOLYSIS [J].
PEPPER, JM ;
LEE, YW .
CANADIAN JOURNAL OF CHEMISTRY, 1969, 47 (05) :723-&
[9]   Lignin Valorization: Improving Lignin Processing in the Biorefinery [J].
Ragauskas, Arthur J. ;
Beckham, Gregg T. ;
Biddy, Mary J. ;
Chandra, Richard ;
Chen, Fang ;
Davis, Mark F. ;
Davison, Brian H. ;
Dixon, Richard A. ;
Gilna, Paul ;
Keller, Martin ;
Langan, Paul ;
Naskar, Amit K. ;
Saddler, Jack N. ;
Tschaplinski, Timothy J. ;
Tuskan, Gerald A. ;
Wyman, Charles E. .
SCIENCE, 2014, 344 (6185) :709-+
[10]   Formic-acid-induced depolymerization of oxidized lignin to aromatics [J].
Rahimi, Alireza ;
Ulbrich, Arne ;
Coon, Joshua J. ;
Stahl, Shannon S. .
NATURE, 2014, 515 (7526) :249-252