Lesions of the basolateral amygdala complex block propofol-induced amnesia for inhibitory avoidance learning in rats

被引:44
作者
Alkire, MT
Vazdarjanova, A
Dickinson-Anson, H
White, NS
Cahill, L
机构
[1] Univ Calif Irvine, Ctr Med, Dept Anesthesiol, Orange, CA 92868 USA
[2] Univ Calif Irvine, Dept Neurobiol & Behav, Orange, CA 92868 USA
[3] Univ Calif Irvine, Ctr Neurobiol Learning & Mem, Orange, CA 92868 USA
关键词
D O I
10.1097/00000542-200109000-00025
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: As the unitary theory of anesthesia gives way to the "multiple sites, multiple mechanisms" concept, the sites involved in mediating the components of anesthesia must be identified. In the current study, we test the hypothesis that the basolateral amygdala complex (BLAC) is a brain site involved with mediating propofol-induced amnesia. Methods: Male Sprague-Dawley rats were divided into two groups, sham-operated control animals and rats given bilateral excitotoxic N-methyl-D-aspartate lesions of the BLAC. For each group, animals were given intraperitoneal saline or propofol (25 mg/kg) 5 min before inhibitory avoidance learning. Rats were given a foot shock (0.4 mA) upon entering the dark side of a two-sided apparatus. Rats could escape additional shock by returning to and staying in the light side. Training ended after shock avoidance for greater than 60 s. Memory was tested at 24 h. Longer latencies to enter the dark side 24 h after training imply better memory. Results: Sham-saline-treated animals had a robust memory latency (median latency [interquartile range] = 300 [163-567] s). Sham-propofol-treated animals exhibited a significant anterograde amnesia (latency = 63 [14-111] s) (P < 0.05 vs. sham-saline-treated animal). Both the saline-injected and propofol-injected animals with BLAC lesions showed robust memory (latency = 300 [264-485] and 323 [143-480] s, respectively). These latencies did not differ from performance in the sham-saline-treated group and were significantly higher than the latency of the sham-propofol-treated group (both P < 0.05). Conclusions: Discrete BLAC lesions blocked the amnestic effect of propofol. BLAC activity appears to be a requirement for propofol-induced amnesia. This finding suggests that the BLAC is a key brain site mediating anesthetic-induced amnesia.
引用
收藏
页码:708 / 715
页数:8
相关论文
共 44 条
[1]  
Alkire Michael T., 1999, Anesthesiology (Hagerstown), V91, pA842
[2]   Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers [J].
Alkire, MT .
ANESTHESIOLOGY, 1998, 89 (02) :323-333
[3]   Toward a unified theory of narcosis: Brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness [J].
Alkire, MT ;
Haier, RJ ;
Fallon, JH .
CONSCIOUSNESS AND COGNITION, 2000, 9 (03) :370-386
[4]   Functional brain imaging during anesthesia in humans - Effects of halothane on global and regional cerebral glucose metabolism [J].
Alkire, MT ;
Pomfrett, CJD ;
Haier, RJ ;
Gianzero, MV ;
Chan, CM ;
Jacobsen, BP ;
Fallon, JH .
ANESTHESIOLOGY, 1999, 90 (03) :701-709
[5]   CENTRAL NEURONAL PATHWAYS AND THE PROCESS OF ANESTHESIA [J].
ANGEL, A .
BRITISH JOURNAL OF ANAESTHESIA, 1993, 71 (01) :148-163
[6]   INVOLVEMENT OF THE AMYGDALA GABAERGIC SYSTEM IN THE MODULATION OF MEMORY STORAGE [J].
BRIONI, JD ;
NAGAHARA, AH ;
MCGAUGH, JL .
BRAIN RESEARCH, 1989, 487 (01) :105-112
[7]   Is the amygdala a locus of "conditioned fear"? Some questions and caveats [J].
Cahill, L ;
Weinberger, NM ;
Roozendaal, B ;
McGaugh, JL .
NEURON, 1999, 23 (02) :227-228
[8]   Mechanisms of emotional arousal and lasting declarative memory [J].
Cahill, L ;
McGaugh, JL .
TRENDS IN NEUROSCIENCES, 1998, 21 (07) :294-299
[9]   Amygdala activity at encoding correlated with long-term, free recall of emotional information [J].
Cahill, L ;
Haier, RJ ;
Fallon, J ;
Alkire, MT ;
Tang, C ;
Keator, D ;
Wu, J ;
McGaugh, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :8016-8021
[10]   Sex-related difference in amygdala activity during emotionally influenced memory storage [J].
Cahill, L ;
Haier, RJ ;
White, NS ;
Fallon, J ;
Kilpatrick, L ;
Lawrence, C ;
Potkin, SG ;
Alkire, MT .
NEUROBIOLOGY OF LEARNING AND MEMORY, 2001, 75 (01) :1-9