Hybrid VCSEL - liquid crystal systems

被引:0
|
作者
Panajotov, K. [1 ,2 ]
Xie, Y. [3 ]
Beeckman, J. [3 ]
Neyts, K. [3 ]
Dems, M. [4 ]
Belmonte, C. [1 ]
Thienpont, H. [1 ]
机构
[1] Vrije Univ Brussel, Dept Appl Phys & Photon, B PHOT, Brussels, Belgium
[2] Inst Solid State Phys, BU-1784 Sofia, Bulgaria
[3] Univ Ghent, Dept Elect & Informat Syst, B-9000 Ghent, Belgium
[4] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
关键词
Vertical-Cavity Surface-Emitting Lasers; nematic and cholesteric liquid crystals; polarization; electro-optic effect; SURFACE-EMITTING LASERS; SHORT EXTERNAL-CAVITY; POLARIZATION PROPERTIES; OPTICAL FEEDBACK; THRESHOLD; DYNAMICS; SUBJECT; EDGE; BAND;
D O I
10.1117/12.2079032
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically and experimentally spectral and polarization characteristics of hybrid systems of VCSELs integrated within liquid crystal (LC) cells. Three cases are considered: Nematic or cholesteric LC on top of VCSEL, coupled-cavity system with the second cavity next to the VCSEL's one filled in with nematic LC and a system with a nematic LC inside the VCSEL cavity. For the case of nematic liquid crystal - VCSEL coupled cavity system we demonstrate selection between two orthogonal directions of linear polarization of the fundamental mode by changing the LC length or by electro-optical tuning of the LC director. For the case of cholesteric liquid crystal-VCSEL system we demonstrate lasing on circularly polarized (CP) modes due to the LC band gap for CP light. The transition from nematic to isotropic phase of the LC when increasing temperature leads to a drastic change of the polarization of the generated light from left-handed circular to linear polarization. Finally, we investigate the possibility of efficient wavelength tuning by utilizing electrooptical effect in nematic LC layer integrated next to the active region in a VCSEL cavity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] CW Operation of a Tunable 1550-nm VCSEL Integrating Liquid-Crystal Microcells
    Boisnard, B.
    Alouini, M.
    Debernardi, P.
    Bardinal, V.
    Levallois, C.
    Paranthoen, C.
    Pes, S.
    Camps, T.
    Sadani, B.
    Tavernier, K.
    Bouchoule, S.
    Dupont, L.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (07) : 391 - 394
  • [22] Hybrid CMOS/VCSEL optoelectronic modules
    Chen, HD
    Mao, LH
    Tiang, J
    Liang, K
    Du, Y
    Huang, YZ
    Wu, RG
    Feng, J
    Ke, XM
    Liu, HY
    Wang, ZG
    Li, SR
    Li, ZY
    Guo, WL
    SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2001, : 1259 - 1261
  • [23] Liquid crystal projection display systems
    Shapu Giho/Sharp Technical Journal, 1997, (69): : 75 - 80
  • [24] Liquid crystal projection display systems
    Hamada, H
    SHARP TECHNICAL JOURNAL, 1997, (69): : 75 - 80
  • [25] Classification of nematic liquid crystal systems
    Molotchko, VA
    Pestov, SM
    Lidine, RA
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1996, 287 : 47 - 56
  • [26] Biphasic and colloidal liquid crystal systems
    Evans, Julian
    Wang, Nan
    He, Sailing
    LIQUID CRYSTALS XXII, 2018, 10735
  • [27] Nanostructured liquid crystal systems and applications
    Khokhlov, Alexei R.
    Emelyanenko, Alexander V.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 2644 - 2645
  • [28] Photoalignment of liquid-crystal systems
    Ichimura, K
    CHEMICAL REVIEWS, 2000, 100 (05) : 1847 - 1873
  • [29] POLYDISPERSITY IN LIQUID-CRYSTAL SYSTEMS
    SLUCKIN, TJ
    LIQUID CRYSTALS, 1989, 6 (01) : 111 - 131
  • [30] Hybrid liquid crystal-photonic crystal fiber tunable interferometer
    Poudereux, David
    Quintana, Xabier
    Corredera, Pedro
    Geday, Morten A.
    Oton, Jose M.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (09) : 2075 - 2079