A Multi-Channel 1.52 μVrms Front End with Orthogonal Frequency Chopping for Neural Recording Applications

被引:0
|
作者
Dong, Li [1 ]
Lan, Zhechong [1 ]
Gui, Xiaoyan [1 ]
He, Chengyang [1 ]
Xin, Youze [1 ]
Li, Ken [1 ]
Geng, Li [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Microelect, Xian, Peoples R China
来源
2019 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
neural recording; noise; Orthogonal frequency chopping; capacitive-coupled instrumentation amplifier; SAR-ADC; dynamic element matching; AMPLIFIER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a multi-channel neural recording front end (FE) with orthogonal frequency chopping for neural recording applications by using a standard 0.18 mu m CMOS process. Considering the dc electrode offset (DEO) and the limited input impedance, dc-servo loop with duty cycle resistor and positive feedback loop with T-bridge capacitors are employed, which achieves high pass corner frequency of 0.1 Hz and input impedance of 850 M Omega, respectively. The proposed SAR-ADC with dynamic element matching (DEM) algorithm enhances the FE linearity. The total input referred noise (IRN) is 1.52 V-rms with 4 times oversampling, which is the lowest compared to prior-art of works, while exhibiting comparable power consumption.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 50 条
  • [1] A 0.8 μVRMS 8-channel front-end for EEG recording
    Huang, Guocheng
    Yin, Tao
    Yang, Haigang
    Cai, Xinxia
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2019, 99 (02) : 427 - 436
  • [2] A 0.8 μVRMS 8-channel front-end for EEG recording
    Guocheng Huang
    Tao Yin
    Haigang Yang
    Xinxia Cai
    Analog Integrated Circuits and Signal Processing, 2019, 99 : 427 - 436
  • [3] A wireless FM multi-channel microsystem for biomedical neural recording applications
    Mohseni, P
    Najafi, K
    2003 SOUTHWEST SYMPOSIUM ON MIXED-SIGNAL DESIGN, 2003, : 217 - 222
  • [4] A Low-Power Current-Reuse Analog Front-End for Multi-Channel Neural Signal Recording
    Sepehrian, H.
    Mirbozorgi, S. A.
    Gosselin, B.
    2014 IEEE 12TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2014, : 440 - 443
  • [5] Multi-Channel Neural Recording Implants: A Review
    Noshahr, Fereidoon Hashemi
    Nabavi, Morteza
    Sawan, Mohamad
    SENSORS, 2020, 20 (03)
  • [6] A 1.83 μW, 0.78. μVrms Input Referred Noise Neural Recording Front End
    Wu, Jiangchao
    Law, Man-Kay
    Mak, Pui-In
    Martins, Rui P.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 405 - 408
  • [7] A multi-channel analog IC for in vitro neural recording
    袁丰
    王志功
    吕晓迎
    Journal of Semiconductors, 2016, 37 (02) : 146 - 151
  • [8] A multi-channel analog IC for in vitro neural recording
    Yuan Feng
    Wang Zhigong
    Lu Xiaoying
    JOURNAL OF SEMICONDUCTORS, 2016, 37 (02)
  • [9] Multi-channel front-end board for SiPM readout
    Auger, M.
    Ereditato, A.
    Goeldi, D.
    Kreslo, I.
    Lorca, D.
    Luethi, M.
    von Rohr, C. Rudolf
    Sinclair, J.
    Weber, M. S.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [10] Front end electronics for multi-channel semiconductor imaging systems
    Weilhammer, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 497 (01): : 210 - 220