Bias from misspecification of the component variances in a normal mixture

被引:5
作者
Lo, Yungtai [1 ]
机构
[1] Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, Bronx, NY 10461 USA
关键词
Asymptotic bias; Bootstrap; EM algorithm; Normal mixture; Systolic blood pressure; MAXIMUM-LIKELIHOOD-ESTIMATION; NUMBER;
D O I
10.1016/j.csda.2011.04.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bias in parameter estimates can be substantial when heteroscedastic normal mixtures are misspecified as homoscedastic normal mixtures, and vice versa. We show through simulations that the maximum likelihood estimators under the false assumption of equal variances are inconsistent and bias in parameter estimates is appreciable and even substantial when the mixture components are not well-separated. Finite sample bias in parameter estimates is close to the asymptotic bias even for a sample size of 200 or less. When homoscedastic normal mixtures are misspecified as heteroscedastic normal mixtures, the maximum likelihood estimators are consistent. However, the maximum likelihood estimators under a correctly specified homoscedastic mixture model converge to the true parameter values faster than those under a misspecified heteroscedastic mixture model. The bias of the maximum likelihood estimators is less dependent on the lower bound imposed on the component variances to ensure that the likelihood is bounded under the false assumption of unequal variances when the sample size is 500 or more and the component distributions are well-separated. An example is given to demonstrate the effects of a misspecification of the component variances on estimates of the prevalence of hypertension using normal mixtures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2739 / 2747
页数:9
相关论文
共 20 条
[1]  
[Anonymous], 2009, MED APPL FINITE MIXT
[2]  
[Anonymous], 2013, Finite Mixture Distributions
[3]   THEORY OF PARAMETRIC IDENTIFICATION [J].
BOWDEN, R .
ECONOMETRICA, 1973, 41 (06) :1069-1074
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]   BIAS IN MISSPECIFIED MIXTURES [J].
GRAY, G .
BIOMETRICS, 1994, 50 (02) :457-470
[7]   CONSISTENCY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (04) :887-906
[8]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[9]   Testing the number of components in a normal mixture [J].
Lo, YT ;
Mendell, NR ;
Rubin, DB .
BIOMETRIKA, 2001, 88 (03) :767-778
[10]   Likelihood ratio tests of the number of components in a normal mixture with unequal variances [J].
Lo, YT .
STATISTICS & PROBABILITY LETTERS, 2005, 71 (03) :225-235