Nationwide crop yield estimation based on photosynthesis and meteorological stress indices

被引:27
作者
Chen, Yang [1 ]
Donohue, Randall J. [2 ,6 ]
McVicar, Tim R. [2 ,6 ]
Waldner, Francois [3 ]
Mata, Gonzalo [4 ]
Ota, Noboru [4 ]
Houshmandfar, Alireza [4 ]
Dayal, Kavina [5 ]
Lawes, Roger A. [4 ]
机构
[1] CSIRO Data61, 34 Village St, Docklands, Vic 3008, Australia
[2] CSIRO Land & Water, GPO Box 1700, Canberra, ACT 2061, Australia
[3] CSIRO Agr & Food, 306 Carmody Rd, St Lucia, Qld 4067, Australia
[4] CSIRO Agr & Food, 147 Underwood Ave, Floreat, WA 6014, Australia
[5] CSIRO Agr & Food, Coll Rd, Sandy Bay, Tas 7005, Australia
[6] Australian Res Council, Ctr Excellence Climate Extremes, Canberra, ACT 2061, Australia
基金
澳大利亚研究理事会;
关键词
Crop yield estimation; Radiation use efficiency; Stress index; NDVI; Remote sensing; Canola; Wheat; Barley; WATER-USE EFFICIENCY; REMOTELY-SENSED DATA; LEAF-AREA INDEX; CLIMATE-CHANGE; GRAIN-YIELD; NITROGEN-FERTILIZER; SOLAR-RADIATION; HARVEST INDEX; SPRING BARLEY; MODEL;
D O I
10.1016/j.agrformet.2019.107872
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
There is considerable demand for nationwide grain yield estimation during the cropping season by growers, grain marketers, grain handlers, agricultural businesses, and market brokers. In this paper, we developed a semi-empirical model (Crop-SI) to estimate the yield of the three major crops in the dryland Australian wheatbelt by combining a radiation use efficiency approach with meteorology driven Stress Indices (SI) at critical crop growth stages (e.g., anthesis and grain filling). These crop-specific SI (e.g., drought, heat and cold stress) help explain the impact of high spatial agro-environmental heterogeneity, which lead to substantial improvement in grain yield prediction. Crop-SI explains 87%, 69% and 83% of the observed field-scale grain yield variability with root mean square error of similar to 0.4, 0.4 and 0.5 t/ha for canola, wheat, and barley, respectively. At the pixel-level, Crop-SI reduces the relative error in grain yield estimation to 34%, 25%, and 20% for canola, wheat, barley, respectively, compared to two benchmark models. By incorporating water- and temperature-driven stresses, Crop-SI's predictive skill in highly variable environments is enhanced. As such, it paves the way for the next generation of agricultural systems models, knowledge products and decision support tools that need to operate at various scales.
引用
收藏
页数:13
相关论文
共 98 条
[21]   Evaluation of the remote-sensing-based DIFFUSE model for estimating photosynthesis of vegetation [J].
Donohue, R. J. ;
Hume, I. H. ;
Roderick, M. L. ;
McVicar, T. R. ;
Beringer, J. ;
Hutley, Lb. ;
Gallant, J. C. ;
Austin, J. M. ;
van Gorsel, E. ;
Cleverly, J. R. ;
Meyer, W. S. ;
Arndt, S. K. .
REMOTE SENSING OF ENVIRONMENT, 2014, 155 :349-365
[22]   Towards a national, remote-sensing-based model for predicting field-scale crop yield [J].
Donohue, Randall J. ;
Lawes, Roger A. ;
Mata, Gonzalo ;
Gobbett, David ;
Ouzman, Jackie .
FIELD CROPS RESEARCH, 2018, 227 :79-90
[23]   Application of MODIS derived parameters for regional crop yield assessment [J].
Doraiswamy, PC ;
Sinclair, TR ;
Hollinger, S ;
Akhmedov, B ;
Stern, A ;
Prueger, J .
REMOTE SENSING OF ENVIRONMENT, 2005, 97 (02) :192-202
[24]   Crop yield assessment from remote sensing [J].
Doraiswamy, PC ;
Moulin, S ;
Cook, PW ;
Stern, A .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2003, 69 (06) :665-674
[25]   Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia [J].
Dreccer, M. Fernanda ;
Fainges, Justin ;
Whish, Jeremy ;
Ogbonnaya, Francis C. ;
Sadras, Victor O. .
AGRICULTURAL AND FOREST METEOROLOGY, 2018, 248 :275-294
[26]   A MODEL FOR SIMULATING PHOTOSYNTHESIS IN PLANT COMMUNITIES [J].
DUNCAN, WG ;
LOOMIS, RS ;
WILLIAMS, WA ;
HANAU, R .
HILGARDIA, 1967, 38 (04) :181-&
[27]   PHOTOSYNTHESIS AND NITROGEN RELATIONSHIPS IN LEAVES OF C-3 PLANTS [J].
EVANS, JR .
OECOLOGIA, 1989, 78 (01) :9-19
[28]   Crop yield estimation by satellite remote sensing [J].
Ferencz, C ;
Bognár, P ;
Lichtenberger, J ;
Hamar, D ;
Tarcsai, G ;
Timár, G ;
Molnár, G ;
Pásztor, S ;
Steinbach, P ;
Székely, B ;
Ferencz, OE ;
Ferencz-Arkos, I .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (20) :4113-4149
[29]   Understanding the weather signal in national crop-yield variability [J].
Frieler, Katja ;
Schauberger, Bernhard ;
Arneth, Almut ;
Balkovic, Juraj ;
Chryssanthacopoulos, James ;
Deryng, Delphine ;
Elliott, Joshua ;
Folberth, Christian ;
Khabarov, Nikolay ;
Mueller, Christoph ;
Olin, Stefan ;
Pugh, Thomas A. M. ;
Schaphoff, Sibyll ;
Schewe, Jacob ;
Schmid, Erwin ;
Warszawski, Lila ;
Levermann, Anders .
EARTHS FUTURE, 2017, 5 (06) :605-616
[30]   Validation and reliability of the EPIC model to simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil [J].
Gaiser, Thomas ;
de Barros, Inacio ;
Sereke, Firesenai ;
Lange, Frank-Michael .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2010, 135 (04) :318-327