Removable singularities of solutions of degenerate nonlinear elliptic equations on the boundary of a domain

被引:0
作者
Gadjiev, T. S. [1 ]
Sadigova, N. R. [1 ]
Rasulov, R. A. [1 ]
机构
[1] Azerbaijan Acad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
Removable singularity; Degenerate; Nonlinear; Elliptic; Boundary of a domain; SETS;
D O I
10.1016/j.na.2011.05.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The removability of singularities of solutions for the Dirichlet problem for degenerate nonlinear elliptic equations on the boundary of a domain is studied. A method based on a priori energetic estimates of solutions to elliptic boundary value problems is used. The growth in the vicinity of a boundary point (finite or at infinity) for generalized solutions is studied. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5566 / 5571
页数:6
相关论文
共 13 条
[1]   GRADIENT ESTIMATES FOR DEGENERATE DIFFUSION-EQUATIONS .1. [J].
ALIKAKOS, ND ;
ROSTAMIAN, R .
MATHEMATISCHE ANNALEN, 1982, 259 (01) :53-70
[2]  
Carleson L., 1967, SELECTED PROBLEMS EX, P126
[3]   WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1191-1226
[5]   ON REMOVABLE SETS OF SOLUTIONS OF SECOND-ORDER ELLIPTIC AND PARABOLIC EQUATIONS IN NONDIVERGENT FORM [J].
Gadjiev, T. S. ;
Mamedova, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (11) :1743-1756
[6]  
Gilbarg D., 1977, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, px+401, DOI [10.1007/978-3-642-96379-7, DOI 10.1007/978-3-642-96379-7]
[7]   REMOVABLE SINGULARITIES OF SOLUTIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS [J].
HARVEY, R ;
POLKING, J .
ACTA MATHEMATICA UPPSALA, 1970, 125 (1-2) :39-&
[8]   Removable sets for continuous solutions of quasilinear elliptic equations [J].
Kilpeläinen, T ;
Zhong, X .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) :1681-1688
[9]  
Kondrat'ev V.A., 1988, MODERN PROBLEMS MATH, V3, P99
[10]  
Kondratev V.A., 1982, ZAP NAUCHNYKH SEM LO, V115, P114