From edge-coloring to strong edge-coloring

被引:0
作者
Borozan, Valentin [1 ]
Chang, Gerard Jennhwa [2 ,3 ,4 ]
Cohen, Nathann [5 ]
Fujita, Shinya [6 ]
Narayanan, Narayanan [2 ,5 ,7 ]
Naserasr, Reza
Valicov, Petru [3 ,8 ]
机构
[1] Alfred Renyi Inst Math, Budapest, Hungary
[2] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
[4] Taipei Off, Natl Ctr Theoret Sci, Hsinchu, Taiwan
[5] Univ Paris 11, CNRS, LRI, F-91405 Orsay, France
[6] Yokohama City Univ, Int Coll Arts & Sci, Yokohama, Kanagawa 2360027, Japan
[7] Indian Inst Technol, Madras 600036, Tamil Nadu, India
[8] Aix Marseille Univ, CNRS, LIF UMR 7279, F-13288 Marseille, France
基金
日本学术振兴会;
关键词
STRONG CHROMATIC INDEX; GRAPH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a generalization of both proper edge-coloring and strong edge-coloring: k-intersection edge-coloring, introduced by Muthu, Narayanan and Subramanian [18]. In this coloring, the set S(v) of colors used by edges incident to a vertex v does not intersect S(u) on more than k colors when u and v are adjacent. We provide some sharp upper and lower bounds for x'(k-int) for several classes of graphs. For l-degenerate graphs we prove that x'(k-int)(G) <= (l + 1)Delta - l(k - 1) - 1. We improve this bound for subcubic graphs by showing that X'(2-int)(G) <= 6. We show that calculating X'(k-int) (K-n) for arbitrary values of k and n is related to some problems in combinatorial set theory and we provide bounds that are tight for infinitely many values of n. Furthermore, for complete bipartite graphs we prove that X'(k-int) (K-n,K-m) = [mn/k]. Finally, we show that computing X'(k-int) (G) is NP-complete for every k >= 1.
引用
收藏
页数:17
相关论文
共 19 条
[1]   THE STRONG CHROMATIC INDEX OF A CUBIC GRAPH IS AT MOST 10 [J].
ANDERSEN, LD .
DISCRETE MATHEMATICS, 1992, 108 (1-3) :231-252
[2]  
Bollobas B., 2004, EXTREMAL GRAPH THEOR
[3]   Strong Chromatic Index of 2-Degenerate Graphs [J].
Chang, Gerard Jennhwa ;
Narayanan, N. .
JOURNAL OF GRAPH THEORY, 2013, 73 (02) :119-126
[4]  
Chladny M, 2010, ELECTRON J COMB, V17
[5]  
Colbourn C.J., 2010, HDB COMBINATORIAL DE, V42
[6]  
Corradi K., 1969, MAT LAPOK, V20, P159
[7]   PROBLEMS AND RESULTS IN COMBINATORIAL ANALYSIS AND GRAPH-THEORY [J].
ERDOS, P .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :81-92
[8]  
Erdos P., 1989, Irregularities of partitions, V8, P162
[9]  
Fouquet J. L., 1983, ARS COMBIN A, V16A, P141, DOI DOI 10.1090/S0894-0347-1992-1124979-1
[10]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1