Dependence structure and risk measure

被引:88
作者
Ané, T
Kharoubi, C
机构
[1] Univ Lausanne, CH-1015 Lausanne, Switzerland
[2] Univ Paris 09, F-75775 Paris 16, France
[3] Univ Technol Sydney, Sydney, NSW 2007, Australia
关键词
D O I
10.1086/375253
中图分类号
F [经济];
学科分类号
02 ;
摘要
Understanding the relationships among multivariate assets would help one greatly about how best to position one's investments and enhance one's financial risk protection. We present a new method to model parametrically the dependence structure of stock index returns through a continuous distribution function, which links an n-dimensional density to its one-dimensional margins. The resulting multivariate model could be used in a wide range of financial applications. Focusing on risk management, we show that a misspecification of the dependence structure introduces, on average, an error in Value-at-Risk estimates.
引用
收藏
页码:411 / 438
页数:28
相关论文
共 18 条
[1]  
COOK RD, 1981, J ROY STAT SOC B MET, V43, P210
[2]  
DEHEUVELS P, 1981, PUBLICATIONS I STAT, V26, P29
[3]  
Deheuvels P., 1979, ACAD ROY BELG B S, V65, P274
[4]  
DURRLEMAN V, 2000, WHICH COPULA IS RIGH
[5]  
Embrechts P., 1999, RISK, V1999, P69
[6]  
Frank MJ., 1979, AEQUATIONES MATH, V19, P194, DOI [10.1007/BF02189866, DOI 10.1007/BF02189866]
[7]  
Frees E.W., 1998, N. Am. Actuar. J., V2, P1, DOI DOI 10.1080/10920277.1998.10595667
[8]   BIVARIATE EXPONENTIAL-DISTRIBUTIONS [J].
GUMBEL, EJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1960, 55 (292) :698-707
[9]  
Joe H., 1996, The Estimation Method of Inference Functions for Margins for Multivariate Models, P1, DOI DOI 10.14288/1.0225985
[10]  
Joe H., 1997, MULTIVARIATE MODELS