A SEMIDISCRETE FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH NONSMOOTH INITIAL DATA

被引:15
作者
Le, Kim Ngan [1 ]
McLean, William [1 ]
Mustapha, Kassem [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
基金
澳大利亚研究理事会;
关键词
time-dependent forcing; stability; nonsmooth solutions; optimal convergence analysis; DISCONTINUOUS GALERKIN METHOD; DIFFERENCE-SCHEMES; COLLOCATION METHOD; DIFFUSION; FEM;
D O I
10.1137/17M1125261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new stability and convergence analysis for the spatial discretization of a time-fractional Fokker-Planck equation in a convex polyhedral domain, using continuous, piecewise-linear, finite elements. The forcing may depend on time as well as on the spatial variables, and the initial data may have low regularity. Our analysis uses a novel sequence of energy arguments in combination with a generalized Gronwall inequality. Although this theory covers only the spatial discretization, we present numerical experiments with a fully discrete scheme employing a very small time step, and observe results consistent with the predicted convergence behavior.
引用
收藏
页码:A3831 / A3852
页数:22
相关论文
共 34 条
[1]   GENERALIZED CONTINUOUS TIME RANDOM WALKS, MASTER EQUATIONS, AND FRACTIONAL FOKKER-PLANCK EQUATIONS [J].
Angstmann, C. N. ;
Donnelly, I. C. ;
Henry, B. I. ;
Langlands, T. A. M. ;
Straka, P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) :1445-1468
[2]  
[Anonymous], 1971, SIAM J. Math. Anal., DOI [10.1137/0502022, DOI 10.1137/0502022]
[3]   The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations [J].
Brunner, H ;
Pedas, A ;
Vainikko, G .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1079-1095
[4]  
Brunner H., 2017, Volterra integral equations: An introduction to the theory and applications, DOI 10.1017/9781316162491
[5]  
Cao X. N., 2015, ADV APPL MATH MECH, V4, P848, DOI [10.1017/S2070073300001910, DOI 10.1017/S2070073300001910]
[6]   Finite difference approximations for the fractional Fokker-Planck equation [J].
Chen, S. ;
Liu, F. ;
Zhuang, P. ;
Anh, V. .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) :256-273
[7]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[8]   Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :143-163
[9]   Numerical algorithm for the time fractional Fokker-Planck equation [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :1510-1522
[10]   WEAKLY SINGULAR DISCRETE GRONWALL-INEQUALITIES [J].
DIXON, J ;
MCKEE, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (11) :535-544