Unsupervised clustering reveals phenotypes of AKI in ICU COVID-19 patients

被引:5
作者
Legouis, David [1 ,2 ]
Criton, Gilles [3 ]
Assouline, Benjamin [1 ]
Le Terrier, Christophe [1 ]
Sgardello, Sebastian [4 ]
Pugin, Jerome [1 ]
Marchi, Elisa [1 ]
Sangla, Frederic [1 ]
机构
[1] Univ Hosp Geneva, Dept Acute Med, Div Intens Care, Geneva, Switzerland
[2] Univ Hosp Geneva, Dept Med & Cell Physiol, Lab Nephrol, Geneva, Switzerland
[3] Univ Geneva, Geneva Sch Econ & Management, Geneva, Switzerland
[4] Ctr Hosp Valais Romand, Dept Surg, Sion, Switzerland
关键词
AKI; clustering; machine learning; COVID-19; critical care; ACUTE KIDNEY INJURY; RENAL-REPLACEMENT THERAPY; VENTILATION; STRATEGIES; INITIATION; MORTALITY; DISEASE;
D O I
10.3389/fmed.2022.980160
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundAcute Kidney Injury (AKI) is a very frequent condition, occurring in about one in three patients admitted to an intensive care unit (ICU). AKI is a syndrome defined as a sudden decrease in glomerular filtration rate. However, this unified definition does not reflect the various mechanisms involved in AKI pathophysiology, each with its own characteristics and sensitivity to therapy. In this study, we aimed at developing an innovative machine learning based method able to subphenotype AKI according to its pattern of risk factors. MethodsWe adopted a three-step pipeline of analyses. First, we looked for factors associated with AKI using a generalized additive model. Second, we calculated the importance of each identified AKI related factor in the estimated AKI risk to find the main risk factor for AKI, at the single patient level. Lastly, we clusterized AKI patients according to their profile of risk factors and compared the clinical characteristics and outcome of every cluster. We applied this method to a cohort of severe COVID-19 patients hospitalized in the ICU of the Geneva University Hospitals. ResultsAmong the 248 patients analyzed, we found 7 factors associated with AKI development. Using the individual expression of these factors, we identified three groups of AKI patients, based on the use of Lopinavir/Ritonavir, baseline eGFR, use of dexamethasone and AKI severity. The three clusters expressed distinct characteristics in terms of AKI severity and recovery, metabolic patterns and hospital mortality. ConclusionWe propose here a new method to phenotype AKI patients according to their most important individual risk factors for AKI development. When applied to an ICU cohort of COVID-19 patients, we were able to differentiate three groups of patients. Each expressed specific AKI characteristics and outcomes, which probably reflect a distinct pathophysiology.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Improved predictive models for acute kidney injury with IDEA: Intraoperative Data Embedded Analytics [J].
Adhikari, Lasith ;
Ozrazgat-Baslanti, Tezcan ;
Ruppert, Matthew ;
Madushani, R. W. M. A. ;
Paliwal, Srajan ;
Hashemighouchani, Haleh ;
Zheng, Feng ;
Tao, Ming ;
Lopes, Juliano M. ;
Li, Xiaolin ;
Rashidi, Parisa ;
Bihorac, Azra .
PLOS ONE, 2019, 14 (04)
[2]  
Allaoui Mebarka, 2020, PROC INT C IMAGE SIG, P317, DOI DOI 10.1007/978-3-030-51935-3_34
[3]   EFFECT OF PEEP VENTILATION ON RENAL-FUNCTION, PLASMA-RENIN, ALDOSTERONE, NEUROPHYSINS AND URINARY ADH, AND PROSTAGLANDINS [J].
ANNAT, G ;
VIALE, JP ;
XUAN, BB ;
AISSA, OH ;
BENZONI, D ;
VINCENT, M ;
GHARIB, C ;
MOTIN, J .
ANESTHESIOLOGY, 1983, 58 (02) :136-141
[4]   Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury [J].
Bagshaw, Sean M. ;
Wald, Ron ;
Adhikari, Neill K. J. ;
Bellomo, Rinaldo ;
da Costa, Bruno R. ;
Dreyfuss, Didier ;
Gallagher, Martin P. ;
Gaudry, Stephane ;
Hoste, Eric A. ;
Lamontagne, Francois ;
Joannidis, Michael ;
Landoni, Giovanni ;
Liu, Kathleen D. ;
McAuley, Daniel F. ;
McGuinness, Shay P. ;
Neyra, Javier A. ;
Nichol, Alistair D. ;
Ostermann, Marlies ;
Palevsky, Paul M. ;
Pettila, Ville ;
Quenot, Jean-Pierre ;
Qiu, Haibo ;
Rochwerg, Bram ;
Schneider, Antoine G. ;
Smith, Orla M. ;
Thome, Fernando ;
Thorpe, Kevin E. ;
Vaara, Suvi ;
Weir, Matthew ;
Wang, Amanda Y. ;
Young, Paul ;
Zarbock, Alexander .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (03) :240-251
[5]  
Barbar SD, 2018, NEW ENGL J MED, V379, P1431, DOI [10.1056/NEJMoa1803213, 10.1056/nejmoa1803213]
[6]   Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy [J].
Bhatraju, Pavan K. ;
Zelnick, Leila R. ;
Herting, Jerald ;
Katz, Ronit ;
Mikacenic, Carmen ;
Kosamo, Susanna ;
Morrell, Eric D. ;
Robinson-Cohen, Cassianne ;
Calfee, Carolyn S. ;
Christie, Jason D. ;
Liu, Kathleen D. ;
Matthay, Michael A. ;
Hahn, William O. ;
Dmyterko, Victoria ;
Slivinski, Natalie S. J. ;
Russell, Jim A. ;
Walley, Keith R. ;
Christiani, David C. ;
Liles, W. Conrad ;
Himmelfarb, Jonathan ;
Wurfel, Mark M. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (07) :863-872
[7]   Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death [J].
Bhatraju, Pavan K. ;
Mukherjee, Paramita ;
Robinson-Cohen, Cassianne ;
O'Keefe, Grant E. ;
Frank, Angela J. ;
Christie, Jason D. ;
Meyer, Nuala J. ;
Liu, Kathleen D. ;
Matthay, Michael A. ;
Calfee, Carolyn S. ;
Christiani, David C. ;
Himmelfarb, Jonathan ;
Wurfel, Mark M. .
CRITICAL CARE, 2016, 20
[8]   Acute Kidney Injury Associated With Lopinavir/Ritonavir Combined Therapy in Patients With COVID-19 [J].
Binois, Yannick ;
Hachad, Hafsah ;
Salem, Joe-Elie ;
Charpentier, Julien ;
Lebrun-Vignes, Benedicte ;
Pene, Frederic ;
Cariou, Alain ;
Chiche, Jean-Daniel ;
Mira, Jean-Paul ;
Nguyen, Lee S. .
KIDNEY INTERNATIONAL REPORTS, 2020, 5 (10) :1787-1790
[9]   Purposeful selection of variables in logistic regression [J].
Bursac, Zoran ;
Gauss, C. Heath ;
Williams, David Keith ;
Hosmer, David W. .
SOURCE CODE FOR BIOLOGY AND MEDICINE, 2008, 3 (01)
[10]   Risk Factors for Acute Kidney Injury in Adult Patients With COVID-19: A Systematic Review and Meta-Analysis [J].
Cai, Xiaoyue ;
Wu, Guiming ;
Zhang, Jie ;
Yang, Lichuan .
FRONTIERS IN MEDICINE, 2021, 8