The Gaussian soliton in the Fermi-Pasta-Ulam chain

被引:22
作者
Liu, Cheng-shi [1 ]
机构
[1] Northeast Petr Univ, Dept Math, Daqing 163318, Peoples R China
关键词
Gaussian solitary wave; Logarithmic nonlinearity; Fermi-Pasta-Ulam chain; Trial equation method; TRIAL EQUATION METHOD; NONLINEAR EVOLUTION-EQUATIONS; SPATIAL SOLITONS; WAVES; STABILITY; SYSTEM;
D O I
10.1007/s11071-021-06879-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider a Fermi-Pasta-Ulam (FPU) chain with the homogeneous fully nonlinear interaction potential which describes the propagation of acoustic wave in chains of touching beads without precompression. From the quasi-continuum approximation of the FPU chain, we first derive out a new type of wave equation which includes a second degree logarithmic nonlinear term. By finding an integrable factor equation, we obtain its Gaussian solitary wave solution. The result shows that if the effect of logarithmic nonlinearity can be balanced with the dispersion, the Gaussian solitary waves do exist for the second degree logarithmic wave equation in real physical models.
引用
收藏
页码:899 / 905
页数:7
相关论文
共 36 条
[1]   Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent [J].
Avdeenkov, Alexander V. ;
Zloshchastiev, Konstantin G. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (19)
[2]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[3]   GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
PHYSICA SCRIPTA, 1979, 20 (3-4) :539-544
[4]   Quasi-stationary optical Gaussons [J].
Biswas, Anjan ;
Milovic, Daniela ;
Girgis, Laila .
OPTIK, 2013, 124 (17) :2959-2962
[5]   (2+1)-dimensional Gaussian solitons due to cascaded second-order non-linearities [J].
Brenier, A .
OPTICS COMMUNICATIONS, 1998, 156 (1-3) :58-62
[6]   On the orbital stability of Gaussian solitary waves in the log-KdV equation [J].
Carles, Remi ;
Pelinovsky, Dmitry .
NONLINEARITY, 2014, 27 (12) :3185-3202
[7]   STABLE-SOLUTIONS OF THE LOGARITHMIC SCHRODINGER-EQUATION [J].
CAZENAVE, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (10) :1127-1140
[8]  
Chen YX, 2017, NONLINEAR DYNAM, V90, P1115, DOI 10.1007/s11071-017-3713-9
[9]   ON THE LOGARITHMIC SCHRODINGER EQUATION [J].
D'Avenia, Pietro ;
Montefusco, Eugenio ;
Squassina, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
[10]  
Dai CQ, 2018, NONLINEAR DYNAM, V92, P1351, DOI 10.1007/s11071-018-4130-4