Cardinal interpolation with periodic polysplines on strips

被引:4
作者
Bejancu, A. [1 ]
Kounchev, O. I. [2 ]
Render, H. [3 ]
机构
[1] Kuwait Univ, Dept Math, Kuwait 13060, Kuwait
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[3] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
关键词
cardinal L-splines; polyharmonic functions; multivariable interpolation;
D O I
10.1007/s10092-007-0137-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a multivariate extension of a classical result of Schoenberg on cardinal spline interpolation. Specifically, we prove the existence of a unique function in C2p-2 (Rn+1), polyharmonic of order p on each strip (j, j + 1) x R-n, j is an element of Z, and periodic in its last n variables, whose restriction to the parallel hyperplanes {j} x R-n, j is an element of Z, coincides with a prescribed sequence of n-variate periodic data functions satisfying a growth condition in vertical bar j vertical bar . The constructive proof is based on separation of Variables and on Micchelli's theory of univariate cardinal L-splines.
引用
收藏
页码:203 / 217
页数:15
相关论文
共 12 条
[1]  
[Anonymous], RADIAL BASIS FUNCTIO
[2]  
[Anonymous], 2001, MULTIVARIATE POLYSPL
[3]  
Bejancu A., 2003, CURVE SURFACE FITTIN, P41
[4]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[5]  
de Boor C., 1993, BOX SPLINES
[6]  
Karlin S., 1976, STUDIES SPLINE FUNCT, P203
[7]   Cardinal interpolation with polysplines on annuli [J].
Kounchev, O ;
Render, H .
JOURNAL OF APPROXIMATION THEORY, 2005, 137 (01) :89-107
[8]  
KOUNCHEV OI, 1991, DOKL BOLG AKAD NAUK, V44, P13
[9]   POLYHARMONIC CARDINAL SPLINES [J].
MADYCH, WR ;
NELSON, SA .
JOURNAL OF APPROXIMATION THEORY, 1990, 60 (02) :141-156
[10]  
Nicolesco M., 1936, Les Fonctions Polyharmoniques