Incorporating Explicit Dose-Volume Constraints in Deep Learning Improves Prediction of Deliverable Dose Distributions for Prostate VMAT Planning

被引:0
|
作者
Willems, S. [1 ]
Vandewinckele, L. [1 ]
Sterpin, E. [1 ,2 ]
Haustermans, K. [1 ,3 ]
Crijns, W. [1 ,3 ]
Maes, F. [1 ]
机构
[1] Katholieke Univ Leuven, Leuven, Belgium
[2] UC Louvain, Leuven, Belgium
[3] UZ Leuven, Leuven, Belgium
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BReP-SNAP-
引用
收藏
页码:E427 / E428
页数:2
相关论文
共 50 条
  • [41] Feasibility of CT-Only 3D Dose Prediction for VMAT Prostate Plans Using Deep Learning
    Willems, S.
    Crijns, W.
    Sterpin, E.
    Haustermans, K.
    Maes, F.
    MEDICAL PHYSICS, 2019, 46 (06) : E122 - E122
  • [42] Inter-Institutional Dose Prediction with Deep Convolutional Neural Network and Transfer Learning for Prostate Cancer VMAT Treatments
    Norouzi-Kandalan, R.
    Nguyen, D.
    Lin, M.
    Montero, A. Barragan
    Breedveld, S.
    Namuduri, K.
    Jiang, S.
    MEDICAL PHYSICS, 2020, 47 (06) : E331 - E332
  • [43] Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients
    Kadoya, Noriyuki
    Kimura, Yuto
    Tozuka, Ryota
    Tanaka, Shohei
    Arai, Kazuhiro
    Katsuta, Yoshiyuki
    Shimizu, Hidetoshi
    Sugai, Yuto
    Yamamoto, Takaya
    Umezawa, Rei
    Jingu, Keiichi
    JOURNAL OF RADIATION RESEARCH, 2023, 64 (05) : 842 - 849
  • [44] Application of dose-volume histogram prediction in biologically related models for nasopharyngeal carcinomas treatment planning
    Wufei Cao
    Yongdong Zhuang
    Lixin Chen
    Xiaowei Liu
    Radiation Oncology, 15
  • [45] Application of dose-volume histogram prediction in biologically related models for nasopharyngeal carcinomas treatment planning
    Cao, Wufei
    Zhuang, Yongdong
    Chen, Lixin
    Liu, Xiaowei
    RADIATION ONCOLOGY, 2020, 15 (01)
  • [46] Relationships between rectal wall dose-volume constraints and radiobiologic indices of toxicity for patients with prostate cancer
    Marzi, Simona
    Arcangeli, Giorgio
    Saracino, Bianca
    Petrongari, Maria G.
    Bruzzaniti, Vicente
    Iaccarino, Giuseppe
    Landoni, Valeria
    Soriani, Antonella
    Benassi, Marcello
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (01): : 41 - 49
  • [47] Dosimetric variations in calculation grid size in prostate VMAT: a dose-volume histogram analysis using the Gaussian error function
    Chow, James C. L.
    Jiang, Runqing
    Markel, Daniel
    JOURNAL OF RADIOTHERAPY IN PRACTICE, 2018, 17 (02) : 162 - 170
  • [48] A Computationally Efficient Algorithm for Integrating Dose-Volume Constraints Into IMRT Fluence Optimization for Automated Treatment Planning
    Mukherjee, S.
    Hong, L.
    Deasy, J.
    Zarepisheh, M.
    MEDICAL PHYSICS, 2018, 45 (06) : E444 - E444
  • [49] Searching for Optimal Dose-Volume Constraints to Reduce Rectal Toxicity after Hypofractionated Radiotherapy for Prostate Cancer
    Faria, S.
    Joshua, B.
    Patrocinio, H.
    Dal Pra, A.
    Cury, F.
    Velly, A. M.
    Souhami, L.
    CLINICAL ONCOLOGY, 2010, 22 (10) : 810 - 817
  • [50] Incorporating human and learned domain knowledge into training deep neural networks: A differentiable dose-volume histogram and adversarial inspired framework for generating Pareto optimal dose distributions in radiation therapy
    Nguyen, Dan
    McBeth, Rafe
    Sadeghnejad Barkousaraie, Azar
    Bohara, Gyanendra
    Shen, Chenyang
    Jia, Xun
    Jiang, Steve
    MEDICAL PHYSICS, 2020, 47 (03) : 837 - 849