New HKT manifolds arising from quaternionic representations

被引:12
作者
Barberis, M. L. [1 ]
Fino, A. [2 ]
机构
[1] Univ Nacl Cordoba, FaMAF CIEM, RA-5000 Cordoba, Argentina
[2] Univ Torino, Dipartimento Matemat, I-10123 Turin, Italy
关键词
KAHLER METRICS; HYPERCOMPLEX; TORSION; CONNECTIONS; INVARIANT; GEOMETRY; BUNDLES;
D O I
10.1007/s00209-009-0643-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a procedure for constructing an 8n-dimensional HKT Lie algebra starting from a 4n-dimensional one by using a quaternionic representation of the latter. The strong (respectively, weak, hyper-Kahler, balanced) condition is preserved by our construction. As an application of our results we obtain a new compact HKT manifold with holonomy in which is not a nilmanifold. We find in addition new compact strong HKT manifolds. We also show that every Kahler Lie algebra equipped with a flat, torsion-free complex connection gives rise to an HKT Lie algebra. We apply this method to two distinguished 4-dimensional Kahler Lie algebras, thereby obtaining two conformally balanced HKT metrics in dimension 8. Both techniques prove to be an effective tool for giving the explicit expression of the corresponding HKT metrics.
引用
收藏
页码:717 / 735
页数:19
相关论文
共 38 条
[1]  
ALEKSEEVSKY DV, 1975, ANAL APPL, V0009, P00097
[2]   Potentials for hyper-Kahler metrics with torsion [J].
Banos, B ;
Swann, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (13) :3127-3135
[3]  
Barberis ML, 2009, MATH RES LETT, V16, P331
[4]   Hyper-Kahler quotients of solvable Lie groups [J].
Barberis, ML ;
Dotti, I ;
Fino, A .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) :691-711
[5]   Complex structures on affine motion groups [J].
Barberis, ML ;
Dotti, IG .
QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 :375-389
[6]   Affine connections on homogeneous hypercomplex manifolds [J].
Barberis, ML .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (01) :1-13
[8]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[9]   Generalized hyper-Kahler geometry and supersymmetry [J].
Bredthauer, Andreas .
NUCLEAR PHYSICS B, 2007, 773 (03) :172-183
[10]  
Cavalcanti G. R., 2004, J. Symplectic Geo, V2, P393, DOI DOI 10.4310/JSG.2004.V2.N3.A5