Inverse magnetic catalysis from the properties of the QCD coupling in a magnetic field

被引:56
作者
Ayala, Alejandro [1 ,2 ,3 ]
Dominguez, C. A. [2 ,3 ]
Hernandez, L. A. [2 ,3 ]
Loewe, M. [2 ,3 ,4 ,5 ]
Zamora, R. [6 ,7 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apartado Postal 70-543, Mexico City 04510, DF, Mexico
[2] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa
[3] Univ Cape Town, Dept Phys, ZA-7700 Rondebosch, South Africa
[4] Pontificia Univ Catolica Chile, Inst Fis, Casilla 306, Santiago 22, Chile
[5] Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso, Chile
[6] Fuerza Aerea Chile, CIDCA, Santiago, Chile
[7] Univ Diego Portales, Inst Ciencias Basicas, Casilla 298-V, Santiago, Chile
基金
新加坡国家研究基金会;
关键词
Magnetic catalysis; QCD; Quark-gluon vertex; QUARK;
D O I
10.1016/j.physletb.2016.05.058
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute the vacuum one-loop quark-gluon vertex correction at zero temperature in the presence of a magnetic field. From the vertex function we extract the effective quark-gluon coupling and show that it grows with increasing magnetic field strength. The effect is due to a subtle competition between the color charge associated to gluons and the color charge associated to quarks, the former being larger than the latter. In contrast, at high temperature the effective thermo-magnetic coupling results exclusively from the contribution of the color charge associated to quarks. This produces a decrease of the coupling with increasing field strength. We interpret the results in terms of a geometrical effect whereby the magnetic field induces, on average, a closer distance between the (electrically charged) quarks and antiquarks. At high temperature, since the effective coupling is proportional only to the color charge associated to quarks, such proximity with increasing field strength makes the effective coupling decrease due to asymptotic freedom. In turn, this leads to a decreasing quark condensate. In contrast, at zero temperature both the effective strong coupling and the quark condensate increase with increasing magnetic field. This is due to the color charge associated to gluons dominating over that associated to quarks, with both having the opposite sign. Thus, the gluons induce a kind of screening of the quark color charge, in spite of the quark-antiquark proximity. We discuss the implications for the inverse magnetic catalysis phenomenon. (C) 2016 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 39 条
[1]   Quark-hadron phase transition in a magnetic field [J].
Agasian, N. O. ;
Fedorov, S. M. .
PHYSICS LETTERS B, 2008, 663 (05) :445-449
[2]   The quark and gluon condensates and low-energy QCD theorems in a magnetic field [J].
Agasian, NO ;
Shushpanov, IA .
PHYSICS LETTERS B, 2000, 472 (1-2) :143-149
[3]  
Andersen J.O., ARXIV14117176HEPPH
[4]   Quark number susceptibilities from resummed perturbation theory [J].
Andersen, Jens O. ;
Mogliacci, Sylvain ;
Su, Nan ;
Vuorinen, Aleksi .
PHYSICAL REVIEW D, 2013, 87 (07)
[5]  
[Anonymous], 2010, NUCL PHYS B, V824, P217
[6]   Magnetized effective QCD phase diagram [J].
Ayala, Alejandro ;
Dominguez, C. A. ;
Hernandez, L. A. ;
Loewe, M. ;
Zamora, R. .
PHYSICAL REVIEW D, 2015, 92 (09)
[7]   Quark deconfinement and gluon condensate in a weak magnetic field from QCD sum rules [J].
Ayala, Alejandro ;
Dominguez, C. A. ;
Hernandez, L. A. ;
Loewe, M. ;
Cristobal Rojas, Juan ;
Villavicencio, Cristian .
PHYSICAL REVIEW D, 2015, 92 (01)
[8]   Finite temperature quark-gluon vertex with a magnetic field in the hard thermal loop approximation [J].
Ayala, Alejandro ;
Cobos-Martinez, J. J. ;
Loewe, M. ;
Elena Tejeda-Yeomans, Maria ;
Zamora, R. .
PHYSICAL REVIEW D, 2015, 91 (01)
[9]   Inverse magnetic catalysis in the linear sigma model with quarks [J].
Ayala, Alejandro ;
Loewe, M. ;
Zamora, R. .
PHYSICAL REVIEW D, 2015, 91 (01)
[10]   Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic effects on the coupling constant [J].
Ayala, Alejandro ;
Loewe, M. ;
Julia Mizher, Ana ;
Zamora, R. .
PHYSICAL REVIEW D, 2014, 90 (03)