Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis

被引:58
作者
Chen, Qiuying [1 ,2 ]
Zhang, Lu [1 ,2 ]
Mo, Xiaokai [1 ]
You, Jingjing [1 ,2 ]
Chen, Luyan [1 ,2 ]
Fang, Jin [1 ]
Wang, Fei [1 ]
Jin, Zhe [1 ,2 ]
Zhang, Bin [1 ,2 ]
Zhang, Shuixing [1 ,2 ]
机构
[1] Jinan Univ, Affiliated Hosp 1, Dept Radiol, 613 Huangpu West Rd, Guangzhou 510627, Guangdong, Peoples R China
[2] Jinan Univ, Grad Coll, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NSCLC; Radiomics; Immunotherapy; Radiomics quality scoring; Systematic review; IMMUNE CHECKPOINT INHIBITORS; PD-L1; EXPRESSION; STATISTICS; DIAGNOSIS; BLOCKADE;
D O I
10.1007/s00259-021-05509-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Prediction of immunotherapy response and outcome in patients with non-small cell lung cancer (NSCLC) is challenging due to intratumoral heterogeneity and lack of robust biomarkers. The aim of this study was to systematically evaluate the methodological quality of radiomic studies for predicting immunotherapy response or outcome in patients with NSCLC. Methods We systematically searched for eligible studies in the PubMed and Web of Science datasets up to April 1, 2021. The methodological quality of included studies was evaluated using the phase classification criteria for image mining studies and the radiomics quality scoring (RQS) tool. A meta-analysis of studies regarding the prediction of immunotherapy response and outcome in patients with NSCLC was performed. Results Fifteen studies were identified with sample sizes ranging from 30 to 228. Seven studies were classified as phase II, and the remaining as discovery science (n = 2), phase 0 (n = 4), phase I (n = 1), and phase III (n = 1). The mean RQS score of all studies was 29.6%, varying from 0 to 68.1%. The pooled diagnostic odds ratio for predicting immunotherapy response in NSCLC using radiomics was 14.99 (95% confidence interval [CI] 8.66-25.95). In addition, radiomics could divide patients into high- and low-risk group with significantly different overall survival (pooled hazard ratio [HR]: 1.96, 95%CI 1.61-2.40, p < 0.001) and progression-free survival (pooled HR: 2.39, 95%CI 1.69-3.38, p < 0.001). Conclusions Radiomics has potential to noninvasively predict immunotherapy response and outcome in patients with NSCLC. However, it has not yet been implemented as a clinical decision-making tool. Further external validation and evaluation within clinical pathway can facilitate personalized treatment for patients with NSCLC.
引用
收藏
页码:345 / 360
页数:16
相关论文
共 48 条
[1]   Immune checkpoint inhibitors of PD-L1 as cancer therapeutics [J].
Akinleye, Akintunde ;
Rasool, Zoaib .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2019, 12 (01)
[2]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1136/bmj.g7594, 10.1016/j.eururo.2014.11.025]
[3]   Update on Immune Checkpoint Inhibitors in Lung Cancer [J].
Creelan, Benjamin C. .
CANCER CONTROL, 2014, 21 (01) :80-89
[4]   Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics [J].
Dercle, Laurent ;
Fronheiser, Matthew ;
Lu, Lin ;
Du, Shuyan ;
Hayes, Wendy ;
Leung, David K. ;
Roy, Amit ;
Wilkerson, Julia ;
Guo, Pingzhen ;
Fojo, Antonio T. ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
CLINICAL CANCER RESEARCH, 2020, 26 (09) :2151-2162
[5]   Towards the introduction of the 'Immunoscore' in the classification of malignant tumours [J].
Galon, Jerome ;
Mlecnik, Bernhard ;
Bindea, Gabriela ;
Angell, Helen K. ;
Berger, Anne ;
Lagorce, Christine ;
Lugli, Alessandro ;
Zlobec, Inti ;
Hartmann, Arndt ;
Bifulco, Carlo ;
Nagtegaal, Iris D. ;
Palmqvist, Richard ;
Masucci, Giuseppe V. ;
Botti, Gerardo ;
Tatangelo, Fabiana ;
Delrio, Paolo ;
Maio, Michele ;
Laghi, Luigi ;
Grizzi, Fabio ;
Asslaber, Martin ;
D'Arrigo, Corrado ;
Vidal-Vanaclocha, Fernando ;
Zavadova, Eva ;
Chouchane, Lotfi ;
Ohashi, Pamela S. ;
Hafezi-Bakhtiari, Sara ;
Wouters, Bradly G. ;
Roehrl, Michael ;
Nguyen, Linh ;
Kawakami, Yutaka ;
Hazama, Shoichi ;
Okuno, Kiyotaka ;
Ogino, Shuji ;
Gibbs, Peter ;
Waring, Paul ;
Sato, Noriyuki ;
Torigoe, Toshihiko ;
Itoh, Kyogo ;
Patel, Prabhu S. ;
Shukla, Shilin N. ;
Wang, Yili ;
Kopetz, Scott ;
Sinicrope, Frank A. ;
Scripcariu, Viorel ;
Ascierto, Paolo A. ;
Marincola, Francesco M. ;
Fox, Bernard A. ;
Pages, Franck .
JOURNAL OF PATHOLOGY, 2014, 232 (02) :199-209
[6]   Heterogeneity-of PD-L1 expression in non-small cell lung cancer: Implications for specimen sampling in predicting treatment response [J].
Haragan, Alexander ;
Field, John K. ;
Davies, Michael P. A. ;
Escriu, Carles ;
Gruver, Aaron ;
Gosney, John R. .
LUNG CANCER, 2019, 134 :79-84
[7]   Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker [J].
He, Bingxi ;
Dong, Di ;
She, Yunlang ;
Zhou, Caicun ;
Fang, Mengjie ;
Zhu, Yongbei ;
Zhang, Henghui ;
Huang, Zhipei ;
Jiang, Tao ;
Tian, Jie ;
Chen, Chang .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[8]   Measuring inconsistency in meta-analyses [J].
Higgins, JPT ;
Thompson, SG ;
Deeks, JJ ;
Altman, DG .
BMJ-BRITISH MEDICAL JOURNAL, 2003, 327 (7414) :557-560
[9]   Cancer Statistics, 2009 [J].
Jemal, Ahmedin ;
Siegel, Rebecca ;
Ward, Elizabeth ;
Hao, Yongping ;
Xu, Jiaquan ;
Thun, Michael J. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2009, 59 (04) :225-249
[10]   Quantitative Imaging Network: Data Sharing and Competitive Algorithm Validation Leveraging The Cancer Imaging Archive [J].
Kalpathy-Cramer, Jayashree ;
Freymann, John Blake ;
Kirby, Justin Stephen ;
Kinahan, Paul Eugene ;
Prior, Fred William .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :147-152