Deep Sequential Context Networks for Action Prediction

被引:106
作者
Kong, Yu [1 ]
Tao, Zhiqiang [1 ]
Fu, Yun [1 ,2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
关键词
D O I
10.1109/CVPR.2017.390
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes efficient and powerful deep networks for action prediction from partially observed videos containing temporally incomplete action executions. Different from after-the-fact action recognition, action prediction task requires action labels to be predicted from these partially observed videos. Our approach exploits abundant sequential context information to enrich the feature representations of partial videos. We reconstruct missing information in the features extracted from partial videos by learning from fully observed action videos. The amount of the information is temporally ordered for the purpose of modeling temporal orderings of action segments. Label information is also used to better separate the learned features of different categories. We develop a new learning formulation that enables efficient model training. Extensive experimental results on UCF101, Sports-1M and BIT datasets demonstrate that our approach remarkably outperforms state-of-the-art methods, and is up to 300x faster than these methods. Results also show that actions differ in their prediction characteristics; some actions can be correctly predicted even though only the beginning 10% portion of videos is observed.
引用
收藏
页码:3662 / 3670
页数:9
相关论文
共 36 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]  
[Anonymous], 2014, ECCV
[3]  
[Anonymous], CVPR
[4]  
[Anonymous], 2015, P IEEE C COMP VIS PA
[5]  
[Anonymous], 2015, CVPR
[6]  
[Anonymous], 2013, CVPR
[7]  
[Anonymous], 2012, CVPR
[8]  
[Anonymous], ICML
[9]  
Cao Yu., 2013, CVPR
[10]  
Chen M., 2012, ICML, DOI DOI 10.1109/ISGT-ASIA.2012.6303206