Quantum cascade lasers: from tool to product

被引:183
作者
Razeghi, M. [1 ]
Lu, Q. Y. [1 ]
Bandyopadhyay, N. [1 ]
Zhou, W. [1 ]
Heydari, D. [1 ]
Bai, Y. [1 ]
Slivken, S. [1 ]
机构
[1] Northwestern Univ, Ctr Quantum Devices, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS-WAVE OPERATION; ROOM-TEMPERATURE; SEMICONDUCTOR-LASER;
D O I
10.1364/OE.23.008462
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 mu m by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 mu m, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication. (C) 2015 Optical Society of America
引用
收藏
页码:8462 / 8475
页数:14
相关论文
共 47 条
[1]   Angled cavity broad area quantum cascade lasers [J].
Bai, Y. ;
Slivken, S. ;
Lu, Q. Y. ;
Bandyopadhyay, N. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2012, 101 (08)
[2]   High power, continuous wave, quantum cascade ring laser [J].
Bai, Y. ;
Tsao, S. ;
Bandyopadhyay, N. ;
Slivken, S. ;
Lu, Q. Y. ;
Caffey, D. ;
Pushkarsky, M. ;
Day, T. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 99 (26)
[3]   Room temperature quantum cascade lasers with 27% wall plug efficiency [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[4]   Highly temperature insensitive quantum cascade lasers [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Selcuk, E. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[5]   Quantum cascade lasers that emit more light than heat [J].
Bai, Yanbo ;
Slivken, Steven ;
Kuboya, Shigeyuki ;
Darvish, Shaban R. ;
Razeghi, Manijeh .
NATURE PHOTONICS, 2010, 4 (02) :99-102
[6]   High power operation of λ ∼ 5.2-11 μm strain balanced quantum cascade lasers based on the same material composition [J].
Bandyopadhyay, N. ;
Bai, Y. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2014, 105 (07)
[7]   Room temperature continuous wave operation of λ ∼ 3-3.2 μm quantum cascade lasers [J].
Bandyopadhyay, N. ;
Bai, Y. ;
Tsao, S. ;
Nida, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2012, 101 (24)
[8]   Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm [J].
Bandyopadhyay, N. ;
Bai, Y. ;
Gokden, B. ;
Myzaferi, A. ;
Tsao, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (13)
[9]  
Bandyopadhyay N., APPL PHYS LETT, V100
[10]  
Beck M., SCIENCE, V295, P301