Linear and cyclic codes over direct product of finite chain rings

被引:8
作者
Borges, J. [1 ]
Fernandez-Cordoba, C. [1 ]
Ten-Valls, R. [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Bellaterra 08193, Spain
关键词
codes over rings; cyclic codes; finite chain rings; linear codes;
D O I
10.1002/mma.4491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new type of linear and cyclic codes. These codes are defined over a direct product of 2 finite chain rings. The definition of these codes as certain submodules of the direct product of copies of these rings is given, and the cyclic property is defined. Cyclic codes can be seen as submodules of the direct product of polynomial rings. Generator matrices for linear codes and generator polynomials for cyclic codes are determined. Further, we study the concept of duality.
引用
收藏
页码:6519 / 6529
页数:11
相关论文
共 21 条
[1]   Z2Z4-Additive Cyclic Codes [J].
Abualrub, Taher ;
Siap, Irfan ;
Aydin, Nuh .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) :1508-1514
[2]  
Annamalai N, ARXIV160104859
[3]  
[Anonymous], [No title captured]
[4]   Z2Z2[u]-Cyclic and Constacyclic Codes [J].
Aydogdu, Ismail ;
Abualrub, Taher ;
Siap, Irfan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) :4883-4893
[5]  
Aydogdu I, 2015, INT J COMPUT MATH, V92, P1806, DOI 10.1080/00207160.2013.859854
[6]   The Structure of Z2Z2s-Additive Codes: Bounds on the Minimum Distance [J].
Aydogdu, Ismail ;
Siap, Irfan .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (06) :2271-2278
[7]  
Bilal M, 2011, DESIGN CODE CRYPTOGR, V61, P31, DOI 10.1007/s10623-010-9437-1
[8]  
Borges J, 2010, DESIGN CODE CRYPTOGR, V54, P167, DOI 10.1007/s10623-009-9316-9
[9]  
Borges J, 2018, DESIGN CODE CRYPTOGR, V86, P463, DOI 10.1007/s10623-017-0334-8
[10]   Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes [J].
Borges, Joaquim ;
Fernandez-Cordoba, Cristina ;
Ten-Valls, Roger .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) :6348-6354